Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.341
Filter
Add more filters

Publication year range
1.
Cell ; 170(1): 102-113.e14, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28648662

ABSTRACT

Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.


Subject(s)
Arabidopsis/physiology , Plant Roots/cytology , Stem Cells/cytology , Cell Division , Cold Temperature , Indoleacetic Acids/metabolism , Plant Roots/physiology , Stem Cell Niche , Stress, Physiological
2.
Nature ; 596(7873): 525-530, 2021 08.
Article in English | MEDLINE | ID: mdl-34433941

ABSTRACT

Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.

3.
Am J Respir Crit Care Med ; 209(10): 1238-1245, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38190701

ABSTRACT

Rationale: The association of acute cellular rejection (ACR) with chronic lung allograft dysfunction (CLAD) in lung transplant recipients has primarily been described before consensus recommendations incorporating restrictive phenotypes. Furthermore, the association of the degree of molecular allograft injury during ACR with CLAD or death remains undefined. Objectives: To investigate the association of ACR with the risk of CLAD or death and to further investigate if this risk depends on the degree of molecular allograft injury. Methods: This multicenter, prospective cohort study included 188 lung transplant recipients. Subjects underwent serial plasma collections for donor-derived cell-free DNA (dd-cfDNA) at prespecified time points and bronchoscopy. Multivariable Cox proportional-hazards analysis was conducted to analyze the association of ACR with subsequent CLAD or death as well as the association of dd-cfDNA during ACR with risk of CLAD or death. Additional outcomes analyses were performed with episodes of ACR categorized as "high risk" (dd-cfDNA ⩾ 1%) and "low risk" (dd-cfDNA < 1%). Measurements and Main Results: In multivariable analysis, ACR was associated with the composite outcome of CLAD or death (hazard ratio [HR], 2.07 [95% confidence interval (CI), 1.05-4.10]; P = 0.036). Elevated dd-cfDNA ⩾ 1% at ACR diagnosis was independently associated with increased risk of CLAD or death (HR, 3.32; 95% CI, 1.31-8.40; P = 0.012). Patients with high-risk ACR were at increased risk of CLAD or death (HR, 3.13; 95% CI, 1.41-6.93; P = 0.005), whereas patients with low-risk status ACR were not. Conclusions: Patients with ACR are at higher risk of CLAD or death, but this may depend on the degree of underlying allograft injury at the molecular level. Clinical trial registered with www.clinicaltrials.gov (NCT02423070).


Subject(s)
Graft Rejection , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Male , Female , Middle Aged , Prospective Studies , Adult , Allografts , Cell-Free Nucleic Acids/blood , Proportional Hazards Models , Risk Factors , Cohort Studies , Aged , Acute Disease
4.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844963

ABSTRACT

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Subject(s)
Breast Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Methyltransferases , RNA Stability , Y-Box-Binding Protein 1 , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
5.
Hum Mol Genet ; 31(11): 1871-1883, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34962261

ABSTRACT

Thyroid dysfunction is a common endocrine disease measured by thyroid-stimulating hormone (TSH) level. Although >70 genetic loci associated with TSH have been reported through genome-wide association studies (GWASs), the variants can only explain a small fraction of the thyroid function heritability. To identify novel candidate genes for thyroid function, we conducted the first large-scale transcriptome-wide association study (TWAS) for thyroid function using GWAS-summary data for TSH levels in up to 119 715 individuals combined with precomputed gene expression weights of six panels from four tissue types. The candidate genes identified by TWAS were further validated by TWAS replication and gene expression profiles. We identified 74 conditionally independent genes significantly associated with thyroid function, such as PDE8B (P = 1.67 × 10-282), PDE10A (P = 7.61 × 10-119), NR3C2 (P = 1.50 × 10-92) and CAPZB (P = 3.13 × 10-79). After TWAS replication using UKBB datasets, 26 genes were replicated for significant associations with thyroid-relevant diseases/traits. Among them, 16 genes were causal for their associations to thyroid-relevant diseases/traits and further validated in differential expression analyses, including two novel genes (MFSD6 and RBM47) that did not implicate in previous GWASs. Enrichment analyses detected several pathways associated with thyroid function, such as the cAMP signaling pathway (P = 7.27 × 10-4), hemostasis (P = 3.74 × 10-4), and platelet activation, signaling and aggregation (P = 9.98 × 10-4). Our study identified multiple candidate genes and pathways associated with thyroid function, providing novel clues for revealing the genetic mechanisms of thyroid function and disease.


Subject(s)
Genome-Wide Association Study , Transcriptome , Genetic Predisposition to Disease , Humans , Phosphoric Diester Hydrolases/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , Thyroid Gland , Thyrotropin/genetics , Transcriptome/genetics
6.
Cancer ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926891

ABSTRACT

BACKGROUND: Phosphatidylinositol 3-kinase (PI3K) inhibitors transformed management of various malignancies. This study preclinically characterized TQ-B3525 (dual PI3Kα/δ inhibitor) and assessed the recommended phase 2 dose (RP2D), safety, efficacy, and pharmacokinetics in relapsed or refractory (R/R) lymphoma or advanced solid tumors (STs). METHODS: Oral TQ-B3525 was given at eight dose levels on a 28-day cycle. Primary end points were dose-limiting toxicity (DLT), maximum tolerated dose (MTD), and safety. RESULTS: TQ-B3525 showed high selectivity and suppressed tumor growth. Between June 12, 2018, and November 18, 2020, 80 patients were enrolled (63 in dose-escalation cohort; 17 in dose-expansion cohort). Two DLTs occurred in two (two of 63, 3.2%) DLT-evaluable patients; MTD was not identified. TQ-B3525 at 20 mg once daily was selected as RP2D. Grade 3 or worse treatment-related adverse events mainly included hyperglycemia (16.3%), neutrophil count decreased (15.0%), and diarrhea (10.0%). Two (2.5%) treatment-related deaths were reported. Sixty patients with R/R lymphoma and 11 advanced STs demonstrated objective response rates of 68.3% and 9.1%, disease control rates of 91.7% and 54.6%, median progression-free survivals of 12.1 and 1.1 months; median overall survivals were not reached. CONCLUSION: TQ-B3525 exhibited rapid absorption and a nearly proportional increase in exposure. Acceptable safety and promising efficacy support further investigation of TQ-B3525 (20 mg once daily) for R/R lymphoma.

7.
Small ; 20(14): e2304622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988675

ABSTRACT

With the rapid development of high-power electronic instruments and communication technology, efficient electromagnetic shielding materials with strong absorption of electromagnetic waves and low reflection characteristics have become the focus of the world's attention. This study designs and synthesizes N-doped carbon-coated hollow Fe3O4 nanospheres (Fe3O4@NC) by spraying Ag nanowires (AgNWs) on textiles as conductive networks. Because of the high permeability and hollow structure Fe3O4@NC, electromagnetic wave goes through a unique process of "absorption, reflection, and reabsorption" when it passes through the surface of the composite textile. In X-band (≈8.2-12.4 GHz), the average electromagnetic interference shielding effectiveness (EMI SE) reaches 50.1 dB, while the reflectance shielding efficiency (SER) is only 2.6 dB, and the average reflectance power coefficient (R) is as low as 0.45. The composite fabric has excellent properties and provides an effective strategy for electromagnetic interference shielding based on absorption.

8.
Chembiochem ; : e202400216, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801354

ABSTRACT

Development of nanomaterials with multiple enzymatic activities via a facile approach receives growing interests in recent years. Although peptide self-assembling provides an effective approach for the construction of biomimetic materials in recent years, fabrication of artificial enzymes from self-assembling peptides with multiple catalytic activities for anticancer therapy is still a challenge. Here, we report a simple method to prepare nanocatalysts with multienzyme-like activities from self-assembling peptides containing ATCUN copper-binding motifs. With the aid of the coordination interactions between the ATCUN motif and Cu(II) ions, these peptides could perform supramolecular self-assembly to form nanomaterials with biomimetic peroxidase, ascorbate oxidase and glutathione peroxidase activities. Moreover, these trienzyme-like effects can elevate oxidative stress levels and suppress the antioxidative capability of cancer cells, which synergistically induce the apoptosis of cancer cells. Because of the high biocompatibility, catalytic activities and drug encapsulation properties, this self-assembled peptide provides a biomimetic platform for the development of new nanocatalytic medicines for multimodal synergistic cancer therapies.

9.
J Virol ; 97(1): e0146722, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475768

ABSTRACT

Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.


Subject(s)
Adenoviruses, Human , Molecular Chaperones , Viral Nonstructural Proteins , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Capsid/metabolism , Capsid Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
10.
Ann Surg Oncol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802711

ABSTRACT

PURPOSE: Robot-assisted radical cystectomy (RARC) has gained traction in the management of muscle invasive bladder cancer. Urinary diversion for RARC was achieved with orthotopic neobladder and ileal conduit. Evidence on the optimal method of urinary diversion was limited. Long-term outcomes were not reported before. This study was designed to compare the perioperative and oncological outcomes of ileal conduit versus orthotopic neobladder cases of nonmetastatic bladder cancer treated with RARC. PATIENTS AND METHODS: The Asian RARC consortium was a multicenter registry involving nine Asian centers. Consecutive patients receiving RARC were included. Cases were divided into the ileal conduit and neobladder groups. Background characteristics, operative details, perioperative outcomes, recurrence information, and survival outcomes were reviewed and compared. Primary outcomes include disease-free and overall survival. Secondary outcomes were perioperative results. Multivariate regression analyses were performed. RESULTS: From 2007 to 2020, 521 patients who underwent radical cystectomy were analyzed. Overall, 314 (60.3%) had ileal conduit and 207 (39.7%) had neobladder. The use of neobladder was found to be protective in terms of disease-free survival [Hazard ratio (HR) = 0.870, p = 0.037] and overall survival (HR = 0.670, p = 0.044) compared with ileal conduit. The difference became statistically nonsignificant after being adjusted in multivariate cox-regression analysis. Moreover, neobladder reconstruction was not associated with increased blood loss, nor additional risk of major complications. CONCLUSIONS: Orthotopic neobladder urinary diversion is not inferior to ileal conduit in terms of perioperative safety profile and long-term oncological outcomes. Further prospective studies are warranted for further investigation.

11.
Opt Express ; 32(12): 21487-21496, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859501

ABSTRACT

We theoretically address the coupling between trimer lattices and reveal the existence of stable multiple edge and interface states. It is shown the superlattice can provides a tunable number of topologically protected edge and interface states depending on the coupling strength and topological phase of the connecting lattices. Dynamics and transport properties of interface states are also investigated, Due to the interference of linear modes with different propagation constants, stable oscillations resulted from the coupling of interface states in finite trimerized waveguide arrays are observed and can give rise to optical coupling functionalities, including directional coupling, beam splitting and beam oscillator.

12.
Opt Express ; 32(12): 20669-20681, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859443

ABSTRACT

Efficient coupling in broad wavelength range is desirable for wide-spectrum infrared light detection, yet this is a challenge for intersubband transition in semiconductor quantum wells (QWs). High-Q cavities mostly intensify the absorption at peak wavelengths but with shrinking bandwidth. Here, we propose a novel approach to expand the operating spectral range of the Quantum Well Infrared Photodetectors (QWIPs). By processing the QWs into asymmetric micro-pillar array structure, the device demonstrates a substantial enhancement in spectral response across the wavelength from 7.1 µm to 12.3 µm with guided mode resonance (GMR) effects. The blackbody responsivity is then increased by 3 times compared to that of the 45° polished edge-coupled counterpart. Meanwhile, the dark current density remains unchanged after the deep etching process, which will benefit the electrical performance of the detector with reduced volume duty ratio. In contrast to the symmetric micro-pillar array that contains simple resonance mode, the detectivity of QWIP in asymmetric pillar structure is found to be improved by 2-4 times within the range of 9.5 µm to 15 µm.

14.
Ann Hematol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916741

ABSTRACT

Immune thrombocytopenia (ITP) is the most common autoimmune disorder characterized by decreased platelet counts and impaired platelet production. Eltrombopag has been demonstrated to be safe and effective for children with ITP. It is reported eltrombopag can achieve a sustained response off treatment. However, data on its overall efficacy and safety profile are scarce in children. This study aimed to investigate the long-term efficacy of eltrombopag in children with ITP. Treatment overall response (OR), complete response (CR), response (R), durable response (DR), no response (NR), treatment free remission (TFR), and relapse rate, were assessed in 103 children with ITP during eltrombopag therapy. The OR rate, CR rate, R rate, DR rate, NR rate, TFR rate, and relapse rate were 67.0%, 55.3%, 11.7%, 56.3%, 33.0%, 60%, 36.2%, respectively. Importantly, we discovered that newly diagnosed ITP patients showed a higher DR rate, TFR rate and lower relapse rate compared to persistent and chronic ITP patients. Furthermore, the CR rate, DR rate, and TFR rate of 5 patients under six months were 100%. None of them suffered relapse. The most common adverse event (AEs) was hepatotoxicity (7.77%). Our study highlighted the critical role of eltrombopag as the second-line treatment in children with ITP who were intolerant to first-line therapy.

15.
Langmuir ; 40(24): 12419-12426, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836381

ABSTRACT

Recently, polyurethane elastomer (TPU) has attracted more and more attention depending on its excellent optical, mechanical, and retreatment properties. The high strength of polyurethane has always been pursued, which can enable its application in more fields. In this work, an aliphatic polyurethane elastomer membrane (HRPU6) was successfully synthesized, and its strength was obviously improved by solvent annealing technology. The tensile strength and adhesion strength can reach 64.56 and 2.58 MPa, but 36.55 and 1.57 MPa only before solvent annealing, respectively. The impact strength of laminated glass based on HRPU has also been significantly improved after solvent annealing, confirmed through drop ball impact testing. It has been confirmed that the increase in strength of HRPU6 is attributed to the enhancement of hydrogen bonding and the improvement of the phase separation degree.

16.
Article in English | MEDLINE | ID: mdl-38240641

ABSTRACT

A Gram-stain-negative, catalase-positive and oxidase-positive, nonmotile, aerobic, light yellow, spherical-shaped bacterial strain with no flagella, designated strain YIM 152171T, was isolated from sediment of the South China Sea. Colonies were smooth and convex, light yellow and circular, and 1.0-1.5×1.0-1.5 µm in cell diameter after 7 days of incubation at 28°C on YIM38 media supplemented with sea salt. Colonies could grow at 20-45°C (optimum 28-35°C) and pH 6.0-11.0 (optimum, pH 7.0-9.0), and they could proliferate in the salinity range of 0-6.0 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C18 : 1 ω7c 11-methyl, C16 : 0, C16 : 1 ω11c, C16 : 1 ω5c, C17 : 1 ω6c and C18 : 1 ω5c. The respiratory quinone was ubiquinone 10, and the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, one unidentified phospholipid and one unidentified aminolipid. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain YIM 152171T within the order Rhodospirillales in a distinct lineage that also included the genus Geminicoccus. The 16S rRNA gene sequence similarities of YIM 152171T to those of Arboricoccus pini, Geminicoccus roseus and Constrictibacter antarcticus were 92.17, 89.25 and 88.91 %, respectively. The assembled draft genome of strain YIM 152171T had 136 contigs with an N50 value of 134704 nt, a total length of 3 001 346 bp and a G+C content of 70.27 mol%. The phylogenetic, phenotypic and chemotaxonomic data showed that strain YIM 152171T (=MCCC 1K08488T=KCTC 92884T) represents a type of novel species and genus for which we propose the name Marinimicrococcus gen. nov., sp. nov.


Subject(s)
Fatty Acids , Rhodospirillales , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Sequence Analysis, DNA , Geologic Sediments/microbiology , Phospholipids/chemistry , China
17.
Bioorg Med Chem Lett ; 107: 129769, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670537

ABSTRACT

Among small-molecule CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) approved for metastatic breast cancers, abemaciclib has a more tolerable adverse effects in clinic. This is attributable to preferential inhibition of CDK4 over CDK6. In our search for a biased CDK4 inhibitor, we discovered a series of pyrimidine-indazole inhibitors. SAR studies led us to TQB3616 as a preferential CDK4 inhibitor. TQB3616 exhibited improvements in both enzymatic and cellular proliferation inhibitory potency when tested side-by-side with the FDA approved palbociclib and abemaciclib. TQB3616 also possessed favorable PK profile in multiple species. These differentiated properties, together with excellent GLP safety profile warranted TQB3616 moving to clinic. TQB3616 entered into clinical development in 2019 and currently in phase III clinical trials (NCT05375461, NCT05365178).


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 4 , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Animals , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Rats , Drug Screening Assays, Antitumor , Drug Evaluation, Preclinical
18.
Org Biomol Chem ; 22(24): 4958-4967, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38819437

ABSTRACT

Development of biocompatible nanomaterials with mitochondria-targeting and multimodal therapeutic activities is important for cancer treatment. Herein, we designed and synthesized a multifunctional pyrrole-based nanomaterial with photothermal effects and mitochondria-targeting properties from polypyrrole and the pro-apoptotic peptide KLA. Different from traditional strategies for the preparation of PPy nanoparticles, we innovatively used the KLA peptide as the template and CuCl2 as the catalyst to trigger the oxidative polymerization of pyrrole for PPy-KLA-Cu nanoparticle formation. Besides, due to the presence of mixed-valence Cu(I)/Cu(II) states, PPy-KLA-Cu nanoparticles also exhibited multienzyme-like activities, such as peroxidase, ascorbate oxidase and glutathione peroxidase activities, which can be exploited to elevate the intracellular ROS level and simultaneously consume GSH in cancer cells. More importantly, the heat generated by PPy-KLA-Cu nanoparticles from NIR irradiation could enhance the nanozymatic activities for ROS elevation and increase the KLA-induced anticancer activity via mitochondrial dysfunction, realizing multimodal treatment of cancer cells with improved therapeutic efficacy.


Subject(s)
Antineoplastic Agents , Apoptosis , Mitochondria , Polymers , Pyrroles , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Catalysis , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Reactive Oxygen Species/metabolism , Copper/chemistry , Copper/pharmacology , Nanostructures/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology
19.
Nanotechnology ; 35(16)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38211327

ABSTRACT

Lithium-sulfur (Li-S) batteries have been garnered significant attention in the energy storage field due to their high theoretical specific capacity and low cost. However, Li-S batteries suffer from issues like the shuttle effect, poor conductivity, and sluggish chemical reaction kinetics, which hinder their practical development. Herein, a novel hollow flower-like architecture composed of MoS2/Mo2C heterostructures in N-doped carbon substrate (H-Mo2S/Mo2C/NC NFs), which were well designed and prepared through a calcination-vulcanization method, were used as high-efficiency catalyst to propel polysulfide redox kinetics.Ex situelectrochemical impedance spectroscopy verify that the abundant heterojunctions could facilitate electron and ion transfer, revealed the excellent interface solid-liquid-solid conversion reaction. The adsorption test of Li2S6showed that Mo2S and Mo2C formed heterostructure generate the binding of polysulfide could be enhanced. And cyclic voltammetry test indicate boost the polysulfide redox reaction kinetics and ion transfer of H-Mo2S/Mo2C/NC/S NFs cathode. Benefiting from the state-of-the-art design, the H-Mo2S/Mo2C/NC/S NFs cathode demonstrates remarkable rate performance with a specific capacity of 1351.9 mAh g-1at 0.2 C, when the current density was elevated to 2 C and subsequently reverted to 0.2 C, the H-Mo2S/Mo2C/NC/S NFs cathode retained a capacity of 1150.4 mAh g-1, and it maintains exceptional long cycling stability (840 mA h g-1at 2 C after 500 cycles) a low capacity decay of 0.0073% per cycle. This work presents an effective approach to rapidly fabricating multifunctional heterostructures as an effective sulfur host in improving the polysulfide redox kinetics for lithium sulfur batteries.

20.
Bioorg Med Chem ; 107: 117750, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38776567

ABSTRACT

Analgesia and blood sugar control are considered as two main unmet clinical needs for diabetes related neuropathic pain patients. Transient receptor potential vanilloid type-1 (TRPV1) channel is a highly validated target for pain perception, while no TRPV1 antagonists have been approved due to hyperthermia side effects. Herein, two series of new TRPV1 antagonists with flavonoid skeleton were designed by the structure-based drug design (SBDD) strategy. After comprehensive evaluation, compound CX-3 was identified as a promising TRPV1 antagonist. CX-3 exhibited equivalent TRPV1 antagonistic activity with classical TRPV1 antagonist BCTC in vitro, and exerted better analgesic activity in vivo than that of BCTC in the formalin induced inflammatory pain model without hyperthermia risk. Moreover, CX-3 exhibited robust glucose-lowering effects and showed high selectivity over other ion channels. Overall, these findings identified a first-in-class highly selective TRPV1 antagonist CX-3, which is a promising candidate to target the pathogenesis of diabetes related neuropathic pain.


Subject(s)
Analgesics , Hypoglycemic Agents , TRPV Cation Channels , Animals , Humans , Male , Mice , Rats , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL