Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Neurocrit Care ; 36(1): 139-147, 2022 02.
Article in English | MEDLINE | ID: mdl-34244920

ABSTRACT

BACKGROUND: Cerebrovascular autoregulation (CA) is a protective mechanism that enables the cerebral vasculature to automodulate tone in response to changes in cerebral perfusion pressure to ensure constant levels of cerebral blood flow (CBF) and oxygen delivery. CA can be impaired after neurological injury and contributes to secondary brain injury. In this study, we report novel impedance indices using trans-ocular brain impedance (TOBI) during controlled systemic hemorrhage and hypotension to assess CA in comparison with pressure reactivity index (PRx). METHODS: Yorkshire swine were instrumented to record intracranial pressure (ICP), mean arterial pressure (MAP), and CBF. TOBI was recorded using electrocardiographic electrodes placed on the closed eyelids. Impedance changes (dz) were recorded in response to introducing an alternating current (0.4 mA) through the electrodes. MAP, ICP, and CBF were also measured. Animals were subjected to a controlled hemorrhage to remove 30-40% of each animal's total blood volume over 25-35 min. Hemorrhage was titrated to reach an MAP of approximately 35 mm Hg and end-tidal carbon dioxide above 28 mm Hg. PRx was calculated as a moving Pearson correlation between MAP and ICP. TOBI indices were calculated as the amplitude of the respiratory-induced changes in dz. DZx was calculated as a moving Pearson correlation between dz and MAP. TOBI indices (dz and DZx) were compared with hemodynamic indicators and PRx. RESULTS: dz was shown to be highly correlated with MAP, ICP, cerebral perfusion pressure, and CBF (r = - 0.823, - 0.723, - 0.813, and - 0.726), respectively (p < 0.0001). During hemorrhage, cerebral perfusion pressure and CBF had a mean percent decrease (standard deviation) from baseline of - 54.2% (12.5%) and - 28.3% (14.7%), respectively, whereas dz increased by 277% (268%). Receiver operator characteristics and precision-recall curves demonstrated high predictive performance of DZx when compared with PRx with an area under the curve above 0.82 and 0.89 for receiver operator characteristic and precision-recall curves, respectively, with high sensitivity and positive predictive power. CONCLUSIONS: TOBI indices appear to track changes in PRx and hemodynamics that affect CA during hemorrhage-induced hypotension. TOBI may offer a suitable, less invasive surrogate to PRx for monitoring and assessing CA.


Subject(s)
Hypotension , Intracranial Pressure , Animals , Brain , Cerebrovascular Circulation/physiology , Electric Impedance , Homeostasis/physiology , Intracranial Pressure/physiology , Swine
2.
IEEE Sens J ; 21(13): 14281-14289, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34504397

ABSTRACT

This study investigated the use of a wearable ring made of polyvinylidene fluoride film to identify a low cardiac index (≤2 L/min). The waveform generated by the ring contains patterns that may be indicative of low blood pressure and/or high vascular resistance, both of which are markers of a low cardiac index. In particular, the waveform contains reflection waves whose timing and amplitude are correlated with pulse travel time and vascular resistance, respectively. Hence, the pattern of the waveform is expected to vary in response to changes in blood pressure and vascular resistance. By analyzing the morphology of the waveform, our aim was to create a tool to identify patients with low cardiac index. This was done using a convolutional neural network which was trained on data from animal models. The model was then tested on waveforms that were collected from patients undergoing pulmonary artery catheterization. The results indicate high accuracy in classifying patients with a low cardiac index, achieving an area under the receiver operating characteristics and precision-recall curves of 0.88 and 0.71, respectively.

3.
J Clin Monit Comput ; 35(5): 1007-1014, 2021 10.
Article in English | MEDLINE | ID: mdl-32666400

ABSTRACT

Cerebrovascular autoregulation (CA) is often impaired following traumatic brain injury. Established technologies and metrics used to assess CA are invasive and conducive for measurement, but not for continuous monitoring. We developed a trans-ocular brain impedance (TOBI) method that may provide non-invasive and continuous indices to assess CA. In this study, we monitored impedance metrics such as respiratory-induced impedance amplitude changes (dz) as well as a novel impedance index (DZx), which is a moving Pearson correlation between mean arterial pressure (MAP) and dz. Yorkshire swine were instrumented to continuously record ICP, MAP, and cerebral blood flow (CBF). TOBI was recorded by placement of standard ECG electrodes on closed eyelids and connected to a data acquisition system. MAP, ICP and CBF were manipulated utilizing an intravenous vasopressor challenge. TOBI indices (dz and DZx) were compared to the hemodynamic indicators as well as pressure reactivity index (PRx). During the vasopressor challenge, dz was highly correlated with ICP, CPP, and CBF (r = < - 0.49, p < 0.0001). ICP, CPP, and CBF had a mean percent increase (standard deviation) from baseline of 29(23.2)%, 70(25)%, and 37(72.6)% respectively while dz decreased by 31(15.6)%. Receiver operator curve test showed high predictive performance of DZx when compared to PRx with area under the curve above 0.86, with high sensitivity and specificity. Impedance indices appear to track changes in PRx and hemodynamics that affect cerebral autoregulation. TOBI may be a suitable less invasive surrogate to PRx and capable of tracking cerebral autoregulation.


Subject(s)
Brain Injuries, Traumatic , Intracranial Pressure , Animals , Arterial Pressure , Brain , Cerebrovascular Circulation , Electric Impedance , Homeostasis , Swine
4.
J Reconstr Microsurg ; 34(6): 420-427, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29452442

ABSTRACT

BACKGROUND: A novel arterial everter device was engineered to simplify microvascular coupling of arteries by reliably securing the stiff, muscular wall of arteries over coupler pins. We compare microvascular coupling with the everter device to manual suturing for arterial anastomoses in a live large animal model. MATERIALS AND METHODS: In this preliminary study, bilateral external femoral arteries of five male swine were exposed and sharply divided. Arteries were anastomosed using either interrupted sutures (n = 5) or the everter device and Synovis Coupler (n = 5). The efficiency in engaging coupler pins, the time taken to perform the anastomosis, and vessel patency immediately post-op and at 1-week postanastomosis were evaluated. Vessel wall injury and luminal stenosis were compared between groups using histomorphometric analyses. RESULTS: On an average, 80% of coupler pins engaged the vessel walls after a single pass of the everter. The average time to perform the anastomosis was significantly less when using the everter/coupler compared with manual suturing (6:35 minutes versus 25:09 minutes, p < 0.001). Immediately post-op, 100% patency was observed in both groups. At 1 week post-op, four of five (80%) of coupled arteries and all five (100%) of hand-sewn arteries were patent. The degree of arterial wall injury, neointimal formation, and luminal stenosis for patent arteries were similar between groups. CONCLUSIONS: Successful arterial anastomoses using the everter device with the Synovis Coupler was easier and significantly more efficient when compared with a standard hand-sewn technique. Both techniques had acceptable patency rates and similar effects on the vessel wall and intima.


Subject(s)
Anastomosis, Surgical/methods , Arteries/physiopathology , Microsurgery , Vascular Patency/physiology , Animals , Arteries/surgery , Male , Microsurgery/methods , Models, Animal , Swine
5.
Shock ; 57(6): 282-290, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35670453

ABSTRACT

INTRODUCTION: Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress. To test this hypothesis, we compared blood and urine RP with concentrations of multiple metabolites in a swine traumatic shock model to identify meaningful RP-metabolite relationships. METHODS: Seven swine were subjected to traumatic shock. Mixed venous (MV) RP, urine RP, and concurrent MV and urine metabolite concentrations were assessed at baseline, max O 2 Debt (80 mL/kg), end resuscitation, and 2 h post-resuscitation. RP was measured at collection via open circuit potential using nanoporous gold electrodes with Ag/AgCl reference and a ParstatMC potentiostat. Metabolite concentrations were measured by quantitative 1 H-NMR spectroscopy. MV and urine RP were compared with time-matched metabolites across all swine. LASSO regression with leave-one-out cross validation was used to determine meaningful RP/metabolite relationships. Metabolites had to maintain magnitude and direction of coefficients across 6 or more swine to be considered as having a meaningful relationship. KEGG IDs of these metabolites were uploaded into Metscape for pathway identification and evaluation for physiologic function. RESULTS: Meaningful metabolite relationships (and mean coefficients across cross-validation folds) with MV RP included: choline (-6.27), ATP (-4.39), glycine (5.93), ADP (1.84), glucose (15.96), formate (-13.09), pyruvate (6.18), and taurine (-7.18). Relationships with urine RP were: betaine (4.81), urea (4.14), glycine (-2.97), taurine (10.32), 3-hydroxyisobutyrate (-7.67), N-phenylacetylglycine, PAG (-14.52), hippurate (12.89), and formate (-5.89). These meaningful metabolites were found to scavenge extracellular peroxide (pyruvate), inhibit ROS and activate cellular antioxidant defense (taurine), act as indicators of antioxidant mobilization against oxidative stress (glycine + PAG), and reflect renal hydroxyl radical trapping (hippurate), among other activities. CONCLUSIONS: Real-time RP measures demonstrate significant relationships with metabolites attributable to metabolic pathways involved in systemic responses to oxidative stress, as well as those involved in these processes. These data support RP measures as a feasible, biologically relevant marker of oxidative stress. As a direct measure of redox state, RP may be a useful biomarker and clinical tool in guiding diagnosis and therapy in states of increased oxidative stress and may offer value as a marker for organ injury in these states as well.


Subject(s)
Antioxidants , Shock, Traumatic , Animals , Biomarkers , Formates , Glycine , Hippurates , Oxidation-Reduction , Oxidative Stress , Pyruvic Acid , Swine , Taurine
6.
Resuscitation ; 175: 57-63, 2022 06.
Article in English | MEDLINE | ID: mdl-35472628

ABSTRACT

BACKGROUND: Large animal studies are an important step in the translation pathway, but single laboratory experiments do not replicate the variability in patient populations. Our objective was to demonstrate the feasibility of performing a multicenter, preclinical, randomized, double-blinded, placebo-controlled cardiac arrest trial. We evaluated the effect of epinephrine on coronary perfusion pressure (CPP) as previous single laboratory studies have reported mixed results. METHODS: Forty-five swine from 5 different laboratories (Ann Arbor, MI; Baltimore, MD; Los Angeles, CA; Pittsburgh, PA; Toronto, ON) using a standard treatment protocol. Ventricular fibrillation was induced and left untreated for 6 min before starting continuous cardiopulmonary resuscitation (CPR). After 2 min of CPR, 9 animals from each lab were randomized to 1 of 3 interventions given over 12 minutes: (1) Continuous IV epinephrine infusion (0.00375 mg/kg/min) with placebo IV normal saline (NS) boluses every 4 min, (2) Continuous placebo IV NS infusion with IV epinephrine boluses (0.015 mg/kg) every 4 min or (3) Placebo IV NS for both infusion and boluses. The primary outcome was mean CPP during the 12 mins of drug therapy. RESULTS: There were no significant differences in mean CPP between the three groups: 14.4 ± 6.8 mmHg (epinephrine Infusion), 16.9 ± 5.9 mmHg (epinephrine bolus), and 14.4 ± 5.5 mmHg (placebo) (p = NS). Sensitivity analysis demonstrated inter-laboratory variability in the magnitude of the treatment effect (p = 0.004). CONCLUSION: This study demonstrated the feasibility of performing a multicenter, preclinical, randomized, double-blinded cardiac arrest trials. Standard dose epinephrine by bolus or continuous infusion did not increase coronary perfusion pressure during CPR when compared to placebo.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Animals , Cardiopulmonary Resuscitation/methods , Epinephrine , Heart Arrest/drug therapy , Perfusion , Swine , Ventricular Fibrillation/therapy
7.
Mil Med ; 186(Suppl 1): 496-501, 2021 01 25.
Article in English | MEDLINE | ID: mdl-32830251

ABSTRACT

INTRODUCTION: Using ultrasound to measure optic nerve sheath diameter (ONSD) has been shown to be a useful modality to detect elevated intracranial pressure. However, manual assessment of ONSD by a human operator is cumbersome and prone to human errors. We aimed to develop and test an automated algorithm for ONSD measurement using ultrasound images and compare it to measurements performed by physicians. MATERIALS AND METHODS: Patients were recruited from the Neurological Intensive Care Unit. Ultrasound images of the optic nerve sheath from both eyes were obtained using an ultrasound unit with an ocular preset. Images were processed by two attending physicians to calculate ONSD manually. The images were processed as well using a novel computerized algorithm that automatically analyzes ultrasound images and calculates ONSD. Algorithm-measured ONSD was compared with manually measured ONSD using multiple statistical measures. RESULTS: Forty-four patients with an average/Standard Deviation (SD) intracranial pressure of 14 (9.7) mmHg were recruited and tested (with a range between 1 and 57 mmHg). A t-test showed no statistical difference between the ONSD from left and right eyes (P > 0.05). Furthermore, a paired t-test showed no significant difference between the manually and algorithm-measured ONSD with a mean difference (SD) of 0.012 (0.046) cm (P > 0.05) and percentage error of difference of 6.43% (P = 0.15). Agreement between the two operators was highly correlated (interclass correlation coefficient = 0.8, P = 0.26). Bland-Altman analysis revealed mean difference (SD) of 0.012 (0.046) (P = 0.303) and limits of agreement between -0.1 and 0.08. Receiver Operator Curve analysis yielded an area under the curve of 0.965 (P < 0.0001) with high sensitivity and specificity. CONCLUSION: The automated image-analysis algorithm calculates ONSD reliably and with high precision when compared to measurements obtained by expert physicians. The algorithm may have a role in computer-aided decision support systems in acute brain injury.


Subject(s)
Optic Nerve , Algorithms , Cluster Analysis , Humans , Intracranial Hypertension , Intracranial Pressure , Optic Nerve/diagnostic imaging , Prospective Studies , Ultrasonography
8.
Resuscitation ; 159: 28-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33338570

ABSTRACT

AIM: It remains unclear whether cardiac arrest (CA) resuscitation generates aerosols that can transmit respiratory pathogens. We hypothesize that chest compression and defibrillation generate aerosols that could contain the SARS-CoV-2 virus in a swine CA model. METHODS: To simulate witnessed CA with bystander-initiated cardiopulmonary resuscitation, 3 female non-intubated swine underwent 4 min of ventricular fibrillation without chest compression or defibrillation (no-flow) followed by ten 2-min cycles of mechanical chest compression and defibrillation without ventilation. The diameter (0.3-10 µm) and quantity of aerosols generated during 45-s intervals of no-flow and chest compression before and after defibrillation were analyzed by a particle analyzer. Aerosols generated from the coughs of 4 healthy human subjects were also compared to aerosols generated by swine. RESULTS: There was no significant difference between the total aerosols generated during chest compression before defibrillation compared to no-flow. In contrast, chest compression after defibrillation generated significantly more aerosols than chest compression before defibrillation or no-flow (72.4 ±â€¯41.6 × 104 vs 12.3 ±â€¯8.3 × 104 vs 10.5 ±â€¯11.2 × 104; p < 0.05), with a shift in particle size toward larger aerosols. Two consecutive human coughs generated 54.7 ±â€¯33.9 × 104 aerosols with a size distribution smaller than post-defibrillation chest compression. CONCLUSIONS: Chest compressions alone did not cause significant aerosol generation in this swine model. However, increased aerosol generation was detected during chest compression immediately following defibrillation. Additional research is needed to elucidate the clinical significance and mechanisms by which aerosol generation during chest compression is modified by defibrillation.


Subject(s)
Aerosols/analysis , COVID-19/transmission , Cardiopulmonary Resuscitation/adverse effects , Heart Massage/adverse effects , Out-of-Hospital Cardiac Arrest/therapy , Animals , Female , Humans , Pilot Projects , SARS-CoV-2 , Swine
9.
Shock ; 56(1): 92-97, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33208679

ABSTRACT

BACKGROUND: In this study, we examined the ability of resonance Raman spectroscopy to measure tissue hemoglobin oxygenation (R-StO2) noninvasively in critically ill patients and compared its performance with conventional central venous hemoglobin oxygen saturation (ScvO2). METHODS: Critically ill patients (n = 138) with an indwelling central venous or pulmonary artery catheter in place were consented and recruited. R-StO2 measurements were obtained by placing a sensor inside the mouth on the buccal mucosa. R-StO2 was measured continuously for 5 min. Blood samples were drawn from the distal port of the indwelling central venous catheter or proximal port of the pulmonary artery catheter at the end of the test period to measure ScvO2 using standard co-oximetry analyzer. A regression algorithm was used to calculate the R-StO2 based on the observed spectra. RESULTS: Mean (SD) of pooled R-StO2 and ScvO2 were 64(7.6) % and 65(9.2) % respectively. A paired t test showed no significant difference between R-StO2 and ScvO2 with a mean(SD) difference of -1(7.5) % (95% CI: -2.2, 0.3%) with a Clarke Error Grid demonstrating 84.8% of the data residing within the accurate and acceptable grids. Area under the receiver operator curve for R-StO2's was 0.8(0.029) (95% CI: 0.7, 0.9 P < 0.0001) at different thresholds of ScvO2 (≤60%, ≤65%, and ≤70%). Clinical adjudication by five clinicians to assess the utility of R-StO2 and ScvO2 yielded Fleiss' Kappa agreement of 0.45 (P < 0.00001). CONCLUSIONS: R-StO2 has the potential to predict ScvO2 with high precision and might serve as a faster, safer, and noninvasive surrogate to these measures.


Subject(s)
Critical Illness , Hemoglobins/metabolism , Oxygen Saturation , Spectrum Analysis, Raman , Wounds and Injuries/metabolism , Aged , Catheterization, Central Venous , Female , Humans , Male , Middle Aged , Prospective Studies
10.
Physiol Rep ; 9(9): e14871, 2021 05.
Article in English | MEDLINE | ID: mdl-33991456

ABSTRACT

To date, existing animal models of the acute respiratory distress syndrome (ARDS) have failed to translate preclinical discoveries into effective pharmacotherapy or diagnostic biomarkers. To address this translational gap, we developed a high-fidelity swine model of ARDS utilizing clinically relevant lung injury exposures. Fourteen male swine were anesthetized, mechanically ventilated, and surgically instrumented for hemodynamic monitoring, blood, and tissue sampling. Animals were allocated to one of three groups: (1) Indirect lung injury only: animals were inoculated by direct injection of Escherichia coli into the kidney parenchyma, provoking systemic inflammation and distributive shock physiology; (2) Direct lung injury only: animals received volutrauma, hyperoxia, and bronchoscope-delivered gastric particles; (3) Combined indirect and direct lung injury: animals were administered both above-described indirect and direct lung injury exposures. Animals were monitored for up to 12 h, with serial collection of physiologic data, blood samples, and radiographic imaging. Lung tissue was acquired postmortem for pathological examination. In contrast to indirect lung injury only and direct lung injury only groups, animals in the combined indirect and direct lung injury group exhibited all of the physiological, radiographic, and histopathologic hallmarks of human ARDS: impaired gas exchange (mean PaO2 /FiO2 ratio 124.8 ± 63.8), diffuse bilateral opacities on chest radiographs, and extensive pathologic evidence of diffuse alveolar damage. Our novel porcine model of ARDS, built on clinically relevant lung injury exposures, faithfully recapitulates the physiologic, radiographic, and histopathologic features of human ARDS and fills a crucial gap in the translational study of human lung injury.


Subject(s)
Disease Models, Animal , Respiratory Distress Syndrome/pathology , Animals , Escherichia coli/pathogenicity , Lung/microbiology , Lung/pathology , Lung/physiopathology , Male , Pulmonary Gas Exchange , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/physiopathology , Swine
11.
J Trauma Acute Care Surg ; 89(6): 1114-1123, 2020 12.
Article in English | MEDLINE | ID: mdl-33112534

ABSTRACT

BACKGROUND: Resuscitative endovascular balloon occlusion of the aorta (REBOA) has been shown to be effective for management of noncompressible torso hemorrhage. However, this technique requires arterial cannulation, which can be time-consuming and not amendable to placement in austere environments. We present a novel, less invasive aortic occlusion device and technique designated gastroesophageal resuscitative occlusion of the aorta (GROA). In this study, we aimed to characterize the physiological tolerance and hemodynamic effects of a prototype GROA device in a model of severe hemorrhagic shock and resuscitation and compare with REBOA. METHODS: Swine (N = 47) were surgically instrumented for data collection. A 35% controlled arterial hemorrhage was followed by randomizing animals to 30-minute, 60-minute, or 90-minute interventions of GROA, REBOA, or control. Following intervention, devices were deactivated, and animals received whole blood and crystalloid resuscitation. Animals were monitored for an additional 4 hours. RESULTS: All animals except one GROA 90-minute application survived the duration of their intervention periods. Survival through resuscitation phase in GROA, REBOA, and control groups was similar in the 30-minute and 60-minute groups. The 90-minute occlusion groups exhibited deleterious effects upon device deactivation and reperfusion with two GROA animals surviving and no REBOA animals surviving. Mean (SD) arterial pressure in GROA and REBOA animals increased across all groups to 98 (31.50) mm Hg and 122 (24.79) mm Hg, respectively, following intervention. Lactate was elevated across all GROA and REBOA groups relative to controls during intervention but cleared by 4 hours in the 30-minute and 60-minute groups. Postmortem histological examination of the gastric mucosa revealed mild to moderate inflammation across all GROA groups. CONCLUSION: In this study, the hemodynamic effects and physiological tolerance of GROA was similar to REBOA. The GROA device was capable of achieving high zone II full aortic occlusion and may be able to serve as an effective method of aortic impingement.


Subject(s)
Balloon Occlusion/methods , Endovascular Procedures/instrumentation , Reperfusion Injury/therapy , Shock, Hemorrhagic/therapy , Animals , Aorta/pathology , Balloon Occlusion/adverse effects , Disease Models, Animal , Hemodynamics/physiology , Hemorrhage/prevention & control , Hemorrhage/therapy , Male , Reperfusion , Resuscitation/methods , Swine
12.
Resusc Plus ; 1-2: 100007, 2020.
Article in English | MEDLINE | ID: mdl-34223294

ABSTRACT

AIM: High-dose valproic acid (VPA) improves the survival and neurologic outcomes after asphyxial cardiac arrest (CA) in rats. We characterized the pharmacokinetics, pharmacodynamics, and safety of high-dose VPA in a swine CA model to advance clinical translation. METHODS: After 8 â€‹min of untreated ventricular fibrillation CA, 20 male Yorkshire swine were resuscitated until return of spontaneous circulation (ROSC). They were block randomized to receive placebo, 75 â€‹mg/kg, 150 â€‹mg/kg, or 300 â€‹mg/kg VPA as 90-min intravenous infusion (n â€‹= â€‹5/group) beginning at ROSC. Animals were monitored for 2 additional hours then euthanized. Experimental operators were blinded to treatments. RESULTS: The mean(SD) total CA duration was 14.8(1.2) minutes. 300 â€‹mg/kg VPA animals required more adrenaline to maintain mean arterial pressure ≥80 â€‹mmHg and had worse lactic acidosis. There was a strong linear correlation between plasma free VPA Cmax and brain total VPA (r2 â€‹= â€‹0.9494; p â€‹< â€‹0.0001). VPA induced dose-dependent increases in pan- and site-specific histone H3 and H4 acetylation in the brain. Plasma free VPA Cmax is a better predictor than peripheral blood mononuclear cell histone acetylation for brain H3 and H4 acetylation (r2 â€‹= â€‹0.7189 for H3K27ac, r2 â€‹= â€‹0.7189 for pan-H3ac, and r2 â€‹= â€‹0.7554 for pan-H4ac; p â€‹< â€‹0.0001). CONCLUSIONS: Up to 150 â€‹mg/kg VPA can be safely tolerated as 90-min intravenous infusion in a swine CA model. High-dose VPA induced dose-dependent increases in brain histone H3 and H4 acetylation, which can be predicted by plasma free VPA Cmax as the pharmacodynamics biomarker for VPA target engagement after CA.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2793-2796, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946473

ABSTRACT

The optic nerve is a part of the central nervous system surrounded by cerebrospinal fluid and is encased in a sheath. Changes to the cerebrospinal fluid due to injury, tumor rupture and so on can increase intracranial pressure (ICP) and can result in changes in the sheath diameter. Measuring the changes in the sheath can be done through ultrasound imaging with which the optic nerve sheath diameter can be measured. Since this approach is non-invasive, it would reduce the cost for patients and healthcare if sheath diameter could be used as a predictor of increase in ICP. However, the manual measurement of the nerve sheath diameter is very time consuming and could be affected by human errors. In this paper we propose an image processing approach in which the optic nerve sheath diameter is measured automatically. In our proposed method, we first denoise images and then detect the region of interest using a simple line integral method. After that by analyzing super-pixels we measure the diameter. We compared the results of the proposed method with manual measurements from two experts. The average percentage of error between the proposed method and the experts' measurements did not substantially differ from the error between the two experts.


Subject(s)
Optic Nerve , Central Nervous System , Humans , Intracranial Hypertension , Intracranial Pressure , Ultrasonography
14.
J Neurotrauma ; 34(22): 3089-3096, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28657491

ABSTRACT

Cerebrovascular autoregulation (CAR) is the ability of vessels to modulate their tone in response to changes in pressure. As an auto-protective mechanism, CAR is critical in preventing secondary brain injury post-trauma. Monitoring of changes in cerebral blood volume might be valuable in evaluating CAR and response to various therapies. In this study, we utilized an ocular-brain bioimpedance interface to assess real time changes in cerebral blood volume in response to a number of physiological challenges. We hypothesize that changes in brain bioimpedance (dz) would track changes in cerebral blood volume. Anesthetized animals were instrumented for monitoring of intracranial pressure (ICP), mean arterial blood pressure, cerebral perfusion pressure (CPP) and cerebral blood flow (CBF). Bioimpedance was monitored continuously through electrocardiographic electrodes placed over the eyelids. Interventions such as hyperventilation, vasopressor administration, creation of an epidural hematoma, and systemic hemorrhage were used to manipulate levels of ICP, CPP, and CBF. The dz correlated with changes in ICP, CPP, and CBF (r = -0.72 to -0.88, p < 0.0001). The receiver operating characteristic for dz at different thresholds of CPP and CBF showed high impedance performance with area under the curve between 0.80-1.00 (p < 0.003) and sensitivity and specificity varying between 83%-100% and 70%-100%, respectively. Our preliminary tests show that brain bioimpedance as measured through the ocular-brain interface tracks changes in CPP and CBF with high precision and may prove to be valuable in the future in assessing changes in cerebral blood volume and CAR.


Subject(s)
Brain/blood supply , Cerebral Blood Volume/physiology , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Intracranial Pressure/physiology , Neurophysiological Monitoring/methods , Plethysmography, Impedance/methods , Animals , Blood Volume Determination , Electric Impedance , Swine
15.
ASAIO J ; 62(4): 463-9, 2016.
Article in English | MEDLINE | ID: mdl-26919184

ABSTRACT

Assessment of volume status in critically ill patients poses a challenge to clinicians. Measuring changes in the inferior vena cava (IVC) diameter using ultrasound is becoming a standard tool to assess volume status. Ultrasound requires physicians with significant training and specialized expensive equipment. It would be of significant value to be able to obtain this measurement continuously without physician presence. We hypothesize that dynamic changes in limb's bioimpedance in response to respiration could be used to predict changes in IVC. Forty-six subjects were tested a hemodialysis session. Impedance was measured via electrodes placed on the arm. Simultaneously, the IVC diameter was assessed by ultrasound. Subjects were asked to breathe spontaneously and perform respiratory maneuvers using a respiratory training device. Impedance (dz) was determined and compared with change in IVC diameter (dIVC; r = 0.76, p < 0.0001). There was significant relationship between dz and dIVC (p< 0.0001). Receiver-operator curves for dz at thresholds of dIVC (20% to70%) demonstrated high predictive power with areas under the curves (0.87-0.99, p < 0.0001). This evaluation suggests that real-time dynamic changes in limb impedance are capable of tracking a wide range of dynamic dIVC. This technique might be a suitable surrogate for monitoring real-time changes in dIVC to assess intravascular volume status.


Subject(s)
Electric Impedance , Renal Dialysis , Vena Cava, Inferior/diagnostic imaging , Adult , Aged , Arm/physiopathology , Female , Humans , Male , Middle Aged , Pilot Projects , Ultrasonography
16.
J Trauma Acute Care Surg ; 78(3): 524-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25710422

ABSTRACT

BACKGROUND: Hemorrhage is the leading cause of death for both civilian and battlefield injuries. Hemorrhage from pelvic vascular wounds is of concern since it is difficult to control before surgical intervention. This has resulted in renewed interest in developing presurgical endovascular approaches to hemorrhage control. However, it is likely that other short-term techniques may be needed as a bridge to such approaches. We tested a prototype device called the pelvic hemostasis belt (PHB) for its ability to reduce or halt blood flow in a lethal model of pelvic arterial injury. METHODS: Seventeen male swine, 42 (5.2)kg were anesthetized, instrumented, and then randomized into three groups (control, military antishock trousers [MAST], and PHB). Animals underwent laparotomy with placement of a 4-0 stainless steel monofilament suture through the right iliac artery. The laparotomy was closed, and the iliac suture was exteriorized. Hemorrhage was produced by pulling the suture through the iliac artery. In both PHB and MAST groups, the devices were applied over the pelvis and lower abdomen for 60 minutes, followed by release and monitoring for 30 minutes or until the animal expired. Hetastarch (500 mL) was infused immediately after commencement of hemorrhage. RESULTS: All PHB group animals and only two from the MAST group survived for 60 minutes. Mean (SD) survival time for the control group was 13 (12.3) minutes. Log-rank (Mantel-Cox) survival analysis demonstrated a significant difference in survival time when comparing all groups (p < 0.0001) as well as when comparing PHB and MAST groups (p = 0.018). Significant differences were noted between groups in mean arterial pressure, lactate, and central venous hemoglobin oxygen saturation levels. CONCLUSION: The PHB was successful in improving survival for 60 minutes after a lethal vascular injury. Such a device may be helpful to bridge endovascular methods of hemorrhage control.


Subject(s)
Hemorrhage/therapy , Hemostatic Techniques/instrumentation , Iliac Artery , Pelvis/blood supply , Pelvis/injuries , Animals , Disease Models, Animal , Male , Random Allocation , Survival Rate , Swine
17.
J Trauma Acute Care Surg ; 76(2): 402-8, 2014 02.
Article in English | MEDLINE | ID: mdl-24378619

ABSTRACT

BACKGROUND: The ability to monitor the patient of hemorrhage noninvasively remains a challenge. We examined the ability of resonance Raman spectroscopy to monitor tissue hemoglobin oxygenation (RRS-StO2) during hemorrhage and compared its performance with conventional invasive mixed venous (SmvO2) and central venous (ScvO2) hemoglobin oxygen saturation as well as with near-infrared spectroscopy tissue hemoglobin oxygenation (NIRS-StO2). METHODS: Five male swine were anesthetized and instrumented followed by hemorrhage at a rate of 30 mL/min for 60 minutes. RRS-StO2 was continuously measured from the buccal mucosa, and NIRS-StO2 was continuously measured from the forelimb. Paired interval measures of SmvO2, ScvO2, and lactate were made. Pearson correlation was used to quantify the degree to which any two variables are related. Receiver operating characteristic (ROC) area under the curve values were used for pooled data for RRS-StO2, NIRS-StO2, SmvO2, and ScvO2 to compare performance in the ability of tissue oxygenation methods to predict the presence of an elevated arterial blood lactate level. RESULTS: Sequential RRS-StO2 changes tracked changes in SmvO2 (r = 0.917; 95% confidence interval [CI], 0.867-0.949) and ScvO2 (r = 0.901; 95% CI, 0.828-0.944) during hemorrhage, while NIRS-StO2 failed to do so for SmvO2 (r = 0.283; 95% CI, 0.04919-0.4984) and ScvO2 (r = 0.142; 95% CI, -0.151 to 0.412). ROC curve performance of oxygenation measured to indicate lactate less than or greater than 3 mM yielded the following ROC area under the curve values: SmvO2 (1.0), ScvO2 (0.994), RRS-StO2 (0.972), and NIRS-StO2 (0.611). CONCLUSION: RRS-StO2 seems to have significantly better ability to track central oxygenation measures during hemorrhage as well as to predict shock based on elevated lactate levels when compared with NIRS-StO2.


Subject(s)
Monitoring, Physiologic/methods , Oxygen/blood , Shock, Hemorrhagic/diagnosis , Spectroscopy, Near-Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Blood Gas Analysis , Confidence Intervals , Disease Models, Animal , Disease Progression , Hemoglobins/analysis , Hemoglobins/metabolism , Hemorrhage/complications , Hemorrhage/diagnosis , Male , Mouth Mucosa/blood supply , Oxygen Consumption/physiology , ROC Curve , Random Allocation , Sensitivity and Specificity , Swine
18.
Resuscitation ; 82(7): 937-43, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21497981

ABSTRACT

BACKGROUND: Logistics complicate fluid resuscitation of traumatic shock on the battlefield. Traumatic shock can result in oxygen debt (O(2)D) accumulation that is fatal. However, the ability of fluid strategies to repay O(2)D are not commonly reported. This pilot study examined various resuscitation fluids, including a combination of PEGylated bovine hemoglobin and hypertonic saline (AfterShock™) on their ability to repay O(2)D in traumatic shock. METHODS: 41 anesthetized swine underwent hemorrhage to an O(2)D of 80 mL/kg. Animals received one of the following: 500 mL whole blood, 500 mL AfterShock™, 500 mL hypertonic (7.2%) saline, 250 mL hypertonic (7.2%) saline, 500 mL Hetastarch (6%), or 500 mL lactated Ringer's. Oxygen transport variables (O(2)D, oxygen consumption, oxygen delivery, central venous hemoglobin oxygen saturation, oxygen extraction ratios), lactate clearance, and survival were monitored for 3h after treatment. Data were analyzed using mixed-model ANOVA and comparisons were made to the performance of whole blood. RESULTS: Only animals receiving AfterShock™, 500 mL hypertonic saline, and 500 mL Hetastarch survived to 180 min. While not statistically significant AfterShock™ demonstrated trends in improving the repayment of O(2)D and in improving oxygen transport variables despite having lower levels of global oxygen delivery compared to whole blood, Hetastarch and 500 mL hypertonic saline groups. CONCLUSION: Use of 500 mL AfterShock™, 500 mL of 7.2% saline or 500 mL of Hetastarch resulted in improved short-term survival. While not statistically significant, AfterShock™ demonstrated trends in improving O(2)D. These findings may have implications for designing resuscitation fluids for combat casualty care.


Subject(s)
Fluid Therapy/methods , Hemoglobins/administration & dosage , Oxygen Consumption/physiology , Oxygen/blood , Resuscitation/methods , Saline Solution, Hypertonic/administration & dosage , Shock, Traumatic/therapy , Animals , Disease Models, Animal , Drug Therapy, Combination , Hydroxyethyl Starch Derivatives/administration & dosage , Infusions, Intravenous , Male , Pilot Projects , Plasma Substitutes/administration & dosage , Shock, Traumatic/blood , Sus scrofa , Treatment Outcome
19.
Shock ; 33(3): 269-73, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19487978

ABSTRACT

Knowledge of central venous pressure (CVP) is considered valuable in the assessment and treatment of various states of critical illness and injury. We tested a noninvasive means of determining CVP (NICVP) by monitoring upper arm blood flow changes in response to externally applied circumferential pressure to the upper arm veins. Thirty-six patients who were undergoing CVP monitoring as part of their care had NICVP determined and compared with CVP. Volume changes were measured in the upper arm using tetra-polar impedance plethysmography underneath a blood pressure cuff. The cuff was inflated over 5 s to a pressure greater than CVP but less than diastolic arterial pressure. After 45 to 60 s, the cuff was rapidly deflated. Noninvasive CVP was determined as the cuff pressure noted at the maximum derivative of the volume increase under the cuff during deflation. Noninvasive CVP was then compared with invasively measured CVP taken during the same period by Bland-Altman analysis. A total of 108 trials (three per subject) were performed on 36 patients. Mean bias was -0.26 mmHg (95% confidence interval [CI]: -0.67, 0.15). Limits of agreement were -2.7 and 2.2 mmHg with the 95% CI for the lower limit of agreement (-3.4, -2.0 mmHg) and for the upper limit of agreement (1.5, 2.9 mmHg). Correlation between CVP and NICVP was 0.95 (95% CI: 0.93 to 0.97; P < 0.0001). Noninvasive CVP as determined in this study may be a clinically useful substitute for traditional CVP measurement and may offer a tool for early diagnosis and treatment of acute states in which knowledge of CVP would be helpful.


Subject(s)
Blood Pressure Determination/methods , Central Venous Pressure/physiology , Adult , Aged , Aged, 80 and over , Arm , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Plethysmography, Impedance
20.
Resuscitation ; 81(8): 987-93, 2010 08.
Article in English | MEDLINE | ID: mdl-20418009

ABSTRACT

BACKGROUND: Hemorrhage continues to be a leading cause of death from trauma sustained both in combat and in the civilian setting. New models of hemorrhage may add value in both improving our understanding of the physiologic responses to severe bleeding and as platforms to develop and test new monitoring and therapeutic techniques. We examined changes in oxygen transport produced by central volume redistribution in humans using lower body negative pressure (LBNP) as a potential mimetic of hemorrhage. METHODS AND RESULTS: In 20 healthy volunteers, systemic oxygen delivery and oxygen consumption, skeletal muscle oxygenation and oral mucosa perfusion were measured over increasing levels of LBNP to the point of hemodynamic decompensation. With sequential reductions in central blood volume, progressive reductions in oxygen delivery and tissue oxygenation and perfusion parameters were noted, while no changes were observed in systemic oxygen uptake or markers of anaerobic metabolism in the blood (e.g., lactate, base excess). While blood pressure decreased and heart rate increased during LBNP, these changes occurred later than the reductions in tissue oxygenation and perfusion. CONCLUSIONS: These findings indicate that LBNP induces changes in oxygen transport consistent with the compensatory phase of hemorrhage, but that a frank state of shock (delivery-dependent oxygen consumption) does not occur. LBNP may therefore serve as a model to better understand a variety of compensatory physiological changes that occur during the pre-shock phase of hemorrhage in conscious humans. As such, LBNP may be a useful platform from which to develop and test new monitoring capabilities for identifying the need for intervention during the early phases of hemorrhage to prevent a patient's progression to overt shock.


Subject(s)
Hemorrhage/metabolism , Models, Cardiovascular , Oxygen Consumption/physiology , Oxygen/metabolism , Blood Gas Analysis , Disease Progression , Female , Follow-Up Studies , Hemorrhage/physiopathology , Humans , Male , Microcirculation/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Photoplethysmography , Prognosis , Prospective Studies , Reference Values , Skin/blood supply , Skin/metabolism , Stroke Volume/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL