Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 161(4): 833-44, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25913193

ABSTRACT

Angiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.9-Å resolution. The AT(1)R-ZD7155 complex structure revealed key structural features of AT(1)R and critical interactions for ZD7155 binding. Docking simulations of the clinically used ARBs into the AT(1)R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs. Our results thereby provide fundamental insights into AT(1)R structure-function relationship and structure-based drug design.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Receptor, Angiotensin, Type 1/chemistry , Amino Acid Sequence , Angiotensin II Type 1 Receptor Blockers/chemistry , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutagenesis , Naphthyridines/chemistry , Naphthyridines/pharmacology , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Sequence Alignment
2.
Pharmacol Rev ; 67(4): 754-819, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26315714

ABSTRACT

The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors­the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor­and a type II trans-membrane zinc protein­the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.


Subject(s)
GTP-Binding Proteins/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System/physiology , Animals , Cardiovascular Diseases/physiopathology , Cell Proliferation , Endothelium/physiopathology , Humans , Inflammation/physiopathology , Kidney Diseases/physiopathology , Mice , Nervous System Diseases/physiopathology , Polymorphism, Genetic , Protein-Tyrosine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Angiotensin/metabolism , Signal Transduction/physiology , Structure-Activity Relationship
3.
J Biol Chem ; 290(13): 8527-38, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25666618

ABSTRACT

Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Filamins/chemistry , Protein Processing, Post-Translational , Amino Acid Sequence , Consensus Sequence , Humans , Molecular Sequence Data , Phosphopeptides/chemistry , Phosphorylation
4.
Biochemistry ; 54(44): 6673-83, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26460884

ABSTRACT

Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.


Subject(s)
Filamins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Binding Sites , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Filamins/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/chemistry , Signal Transduction
5.
Biochemistry ; 49(30): 6317-28, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20575534

ABSTRACT

Little is known about the general folding mechanisms of helical membrane proteins. Unfolded, i.e., non-native states, in particular, have not yet been characterized in detail. Here, we establish conditions under which denatured states of the mammalian membrane protein rhodopsin, a prototypic G protein coupled receptor with primary function in vision, can be studied. We investigated the effects of the chemical denaturants sodium dodecyl sulfate (SDS), urea, guanidine hydrochloride (GuHCl), and trifluoroacetic acid (TFA) on rhodopsin's secondary structure and propensity for aggregation. Ellipticity at 222 nm decreases in the presence of maximum concentrations of denaturants in the order TFA > GuHCl > urea > SDS + urea > SDS. Interpretation of these changes in ellipticity in terms of helix loss is challenged because the addition of some denaturants leads to aggregation. Through a combination of SDS-PAGE, dependence of ellipticity on protein concentration, and 1D (1)H NMR we show that aggregates form in the presence of GuHCl, TFA, and urea but not in any concentration of SDS, added over a range of 0.05%-30%. Mixed denaturant conditions consisting of 3% SDS and 8 M urea, added in this order, also did not result in aggregation. We conclude that SDS is able to prevent the exposure of large hydrophobic regions present in membrane proteins which otherwise leads to aggregation. Thus, 30% SDS and 3% SDS + 8 M urea are the denaturing conditions of choice to study maximally unfolded rhodopsin without aggregation.


Subject(s)
Protein Denaturation/drug effects , Protein Multimerization/drug effects , Rhodopsin/chemistry , Animals , Cattle , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Guanidine/pharmacology , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Protein Conformation , Protein Folding , Sodium Dodecyl Sulfate/pharmacology , Trifluoroacetic Acid/pharmacology , Urea/pharmacology
6.
Photochem Photobiol ; 85(2): 463-70, 2009.
Article in English | MEDLINE | ID: mdl-19267871

ABSTRACT

Anthocyanins are a class of phytochemicals that confer color to flowers, fruits, vegetables and leaves. They are part of our regular diet and serve as dietary supplements because of numerous health benefits, including improved vision. Recent studies have shown that the anthocyanin cyanidin-3-O-glucoside (C3G) increased regeneration of the dim-light photoreceptor rhodopsin (Matsumoto et al. [2003] J. Agric. Food Chem., 51, 3560-3563). In an accompanying study (Yanamala et al. [2009] Photochem. Photobiol.), we show that C3G directly binds to rhodopsin in a pH-dependent manner. In this study, we investigated the functional consequences of C3G binding to rhodopsin. As observed previously in rod outer segments, regeneration of purified rhodopsin in detergent micelles is also accelerated in the presence of C3G. Thermal denaturation and stability studies using circular dichroism, fluorescence and UV/visible absorbance spectroscopy show that C3G exerts a destabilizing effect on rhodopsin structure while it only modestly alters G-protein activation and the rates at which the light-activated Metarhodopsin II state decays to opsin and free retinal. These results indicate that the mechanism of C3G-enhanced regeneration may be based on changes in opsin structure promoting access to the retinal binding pocket.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/metabolism , Glucosides/chemistry , Glucosides/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Cattle , Enzyme Activation , GTP-Binding Proteins/metabolism , Hydrogen-Ion Concentration , Protein Binding , Protein Structure, Secondary , Rhodopsin/isolation & purification
7.
Photochem Photobiol ; 85(2): 454-62, 2009.
Article in English | MEDLINE | ID: mdl-19192199

ABSTRACT

Anthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin. In this paper, we show using selective excitation (1)H NMR spectroscopy that C3G binds to rhodopsin. Ligand resonances broaden upon rhodopsin addition and rhodopsin resonances exhibit chemical shift changes as well as broadening effects in specific resonances, in an activation state-dependent manner. Furthermore, dark-adapted and light-activated states of rhodopsin show preferences for different C3G species. Molecular docking studies of the flavylium cation, quinoidal base, carbinol pseudobase and chalcone forms of C3G to models of the dark, light-activated and opsin structures of rhodopsin also support this conclusion. The results provide new insights into anthocyanin-protein interactions and may have relevance for the enhancement of night vision by this class of compounds. This work is also the first report of the study of ligand binding to a full-length membrane receptor in detergent micelles by (1)H NMR spectroscopy. Such studies were previously hampered by the presence of detergent micelle resonances, a problem overcome by the selective excitation approach.


Subject(s)
Anthocyanins/chemistry , Glucosides/chemistry , Rhodopsin/chemistry , Animals , Cattle , Hydrogen-Ion Concentration , Micelles , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Spectrophotometry
8.
Photochem Photobiol ; 95(3): 787-802, 2019 05.
Article in English | MEDLINE | ID: mdl-30582615

ABSTRACT

The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and 1 H NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with µm affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. 19 F NMR experiments with samples where 19 F labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in 1 H-15 N NMR spectroscopy of 15 N-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin.


Subject(s)
Porphyrins/metabolism , Rhodopsin/metabolism , Allosteric Regulation , Amino Acid Sequence , Animals , Cattle , Chlorophyllides , Light , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Retina/metabolism , Rhodopsin/chemistry , Spectrometry, Fluorescence
9.
BMC Bioinformatics ; 9 Suppl 1: S16, 2008.
Article in English | MEDLINE | ID: mdl-18315847

ABSTRACT

Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects--enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization of the retinal ligand--despite the extensive differences in sequences between mGluRs and rhodopsin.


Subject(s)
Algorithms , Models, Chemical , Models, Molecular , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/ultrastructure , Sequence Analysis, Protein/methods , Amino Acid Sequence , Binding Sites , Computer Simulation , Isomerism , Molecular Sequence Data , Protein Binding , Protein Conformation , Structure-Activity Relationship
10.
PLoS One ; 10(10): e0140872, 2015.
Article in English | MEDLINE | ID: mdl-26484771

ABSTRACT

Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A 'cardiac-specific finger print' of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a 'MAS-signalosome' model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of 'signalosome' components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , PDZ Domains/physiology , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules , Cell Adhesion Molecules, Neuronal/metabolism , Discs Large Homolog 1 Protein , Guanylate Kinases , HEK293 Cells , Humans , Mass Spectrometry , Membrane Proteins/metabolism , Mice , Muscle Proteins/metabolism , Myocardium/cytology , Myocytes, Cardiac/cytology , Proteomics , Proto-Oncogene Mas
11.
PLoS One ; 9(7): e103520, 2014.
Article in English | MEDLINE | ID: mdl-25068582

ABSTRACT

MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1-7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1-7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data suggest that peptide ligands induce atypical signaling and functional desensitization of MAS.


Subject(s)
Peptides/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Amino Acid Sequence , Angiotensin I/metabolism , Angiotensin I/pharmacology , Binding Sites/genetics , Calcium/metabolism , HEK293 Cells , Humans , Inositol Phosphates/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Ligands , Microscopy, Confocal , Models, Molecular , Molecular Sequence Data , Mutation , Neuropeptides/metabolism , Neuropeptides/pharmacology , Oligopeptides/metabolism , Oligopeptides/pharmacology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptides/pharmacology , Protein Binding/drug effects , Protein Structure, Secondary , Proto-Oncogene Mas , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics
12.
BMC Biophys ; 5: 13, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22748306

ABSTRACT

BACKGROUND: G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function as signal transducers. They bind ligands in their extracellular and transmembrane regions and activate cognate G proteins at their intracellular surface at the other side of the membrane. The relay of allosteric communication between the ligand binding site and the distant G protein binding site is poorly understood. In this study, GREMLIN 1, a recently developed method that identifies networks of co-evolving residues from multiple sequence alignments, was used to identify those that may be involved in communicating the activation signal across the membrane. The GREMLIN-predicted long-range interactions between amino acids were analyzed with respect to the seven GPCR structures that have been crystallized at the time this study was undertaken. RESULTS: GREMLIN significantly enriches the edges containing residues that are part of the ligand binding pocket, when compared to a control distribution of edges drawn from a random graph. An analysis of these edges reveals a minimal GPCR binding pocket containing four residues (T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, of the ten residues predicted to have the most long-range interactions (A1173.32, A2726.55, E1133.28, H2115.46, S186EC2, A2927.39, E1223.37, G902.57, G1143.29 and M2075.42), nine are part of the ligand binding pocket. CONCLUSIONS: We demonstrate the use of GREMLIN to reveal a network of statistically correlated and functionally important residues in class A GPCRs. GREMLIN identified that ligand binding pocket residues are extensively correlated with distal residues. An analysis of the GREMLIN edges across multiple structures suggests that there may be a minimal binding pocket common to the seven known GPCRs. Further, the activation of rhodopsin involves these long-range interactions between extracellular and intracellular domain residues mediated by the retinal domain.

13.
Methods Mol Biol ; 914: 285-317, 2012.
Article in English | MEDLINE | ID: mdl-22976035

ABSTRACT

Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM-experimental testing framework to membrane proteins, we describe-alongside the general protocols-here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family.


Subject(s)
Computational Biology/methods , Membrane Proteins/chemistry , Models, Molecular , Motion , Binding Sites , Databases, Protein , Elasticity , Molecular Dynamics Simulation , Principal Component Analysis , Protein Structure, Secondary , Reproducibility of Results , Retinaldehyde/chemistry , Retinaldehyde/metabolism , Rhodopsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL