Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Genomics ; 114(4): 110440, 2022 07.
Article in English | MEDLINE | ID: mdl-35905835

ABSTRACT

The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.


Subject(s)
Lepidoptera , MicroRNAs , Moths , Animals , DNA Transposable Elements , Lepidoptera/genetics , Moths/genetics , Trees/genetics
2.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32521021

ABSTRACT

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , MicroRNAs/genetics , Animals , Base Sequence , Conserved Sequence , Drosophila melanogaster/metabolism , Female , Male , MicroRNAs/metabolism , Multigene Family , Selection, Genetic
3.
Gen Comp Endocrinol ; 295: 113507, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32413346

ABSTRACT

The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.


Subject(s)
Juvenile Hormones/biosynthesis , MicroRNAs/genetics , Neuropeptides/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Insect Hormones/chemistry , Insect Hormones/metabolism , Juvenile Hormones/metabolism , MicroRNAs/metabolism , Neuropeptides/chemistry
5.
PLoS Genet ; 11(3): e1005038, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25774983

ABSTRACT

Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Drosophila Proteins/genetics , Fatty Acids, Unsaturated/genetics , Hydroxymethylglutaryl CoA Reductases/biosynthesis , Metamorphosis, Biological/genetics , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Corpora Allata/growth & development , Corpora Allata/metabolism , Drosophila Proteins/biosynthesis , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Larva , Methyltransferases/biosynthesis , Methyltransferases/genetics , Pupa , Transcription Factors/metabolism
6.
Int J Mol Sci ; 19(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347694

ABSTRACT

Our understanding of microRNA (miRNA) regulation of gene expression and protein translation, as a critical area of cellular regulation, has blossomed in the last two decades. Recently, it has become apparent that in plant-insect interactions, both plants and insects use miRNAs to regulate their biological processes, as well as co-opting each others' miRNA systems. In this review article, we discuss the current paradigms of miRNA-mediated cellular regulation and provide examples of plant-insect interactions that utilize this regulation. Lastly, we discuss the potential biotechnological applications of utilizing miRNAs in agriculture.


Subject(s)
Host-Parasite Interactions/genetics , Insecta/pathogenicity , Magnoliopsida/parasitology , MicroRNAs/genetics , Animals , Insecta/genetics , Magnoliopsida/genetics
7.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29237851

ABSTRACT

Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Methyltransferases/genetics , Signal Transduction/genetics , Animals , Arthropods/genetics , Arthropods/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Methyltransferases/metabolism , MicroRNAs
8.
J Pept Sci ; 22(9): 600-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27477941

ABSTRACT

A FGLamide allatostatin neuropeptide mimic (H17) is a potential insect growth regulator which inhibits the production of juvenile hormone by the corpora allata. To find more evidence to reveal the structure-activity relationships of the Phe(3) residue in the C-terminal conserved pentapeptide and search for novel analogs with high activity, a series of Phe(3) residue-modified analogs were designed and synthesized using H17 as the lead compound. Bioassay using juvenile hormone (JH) production by corpora allata of the cockroach Diploptera punctata indicated that analogs 4, 11, and 13 showed strong ability to inhibit JH production in vitro, with IC50 of 38.5, 22.5, and 26 nM, respectively. As well, the activity of analog 2 (IC50 : 89.5 nM) proved roughly equivalent to that of H17. Based on the primary structure-activity relationships of Phe(3) residue, we suggest that for analogs containing six-membered aromatic rings, removing the methylene group of Phe(3) or an o-halogen or p-halogen-substituted benzene ring could increase the ability to inhibit biosynthesis of JH. This study will be useful for the design of new allatostatin analogs for insect management. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Corpora Allata/drug effects , Hormone Antagonists/chemical synthesis , Insect Proteins/antagonists & inhibitors , Juvenile Hormones/antagonists & inhibitors , Neuropeptides/chemical synthesis , Peptidomimetics/chemical synthesis , Amino Acid Sequence , Animals , Cockroaches/drug effects , Cockroaches/genetics , Cockroaches/metabolism , Corpora Allata/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Hormone Antagonists/pharmacology , Insect Proteins/biosynthesis , Insect Proteins/genetics , Juvenile Hormones/biosynthesis , Juvenile Hormones/genetics , Male , Neuropeptides/pharmacology , Peptidomimetics/pharmacology , Phenylalanine/chemistry , Phenylalanine/metabolism , Structure-Activity Relationship
9.
J Exp Biol ; 218(Pt 7): 983-90, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25657209

ABSTRACT

The NMDA receptor (NMDAR) plays important roles in excitatory neurotransmission and in the regulation of reproduction in mammals. NMDAR in insects comprises two subunits, NR1 and NR2. In this study, we identified two NR1 paralogs and eleven NR2 alternatively spliced variants in the cockroach Diploptera punctata. This is the first report of NR1 paralogs in insects. The tissue distributions and expression profiles of DpNR1A, DpNR1B and DpNR2 in different tissues were also investigated. Previous studies have demonstrated NMDA-stimulated biosynthesis of juvenile hormone (JH) in the corpora allata through the influx of extracellular Ca(2+) in Diploptera punctata. However, our data show that the transcript levels of DpNR1A, DpNR1B and DpNR2 were low in the corpora allata. MK-801, a high-affinity antagonist of NMDAR, did not show any effect on JH biosynthesis in vitro. In addition, neither partial knockdown of DpNR2 nor in vivo treatment with a physiologically relevant dose of MK-801 resulted in any significant change in JH biosynthesis or basal oocyte growth. Injection of animals with a high dose of MK-801 (30 µg per animal per injection), which paralyzed the animals for 4-5 h, resulted in a significant decrease in JH biosynthesis on days 4 and 5. However, the reproductive events during the first gonadotrophic cycle in female D. punctata were unaffected. Thus, NMDAR does not appear to play important roles in the regulation of JH biosynthesis or mediate reproduction of female D. punctata.


Subject(s)
Cockroaches/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Animals , Base Sequence , Corpora Allata/metabolism , Dizocilpine Maleate/pharmacology , Female , Gene Expression Regulation , Juvenile Hormones/biosynthesis , Male , Molecular Sequence Data , Oocytes/physiology , Organ Specificity , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Reproduction
11.
Gen Comp Endocrinol ; 214: 167-76, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25101838

ABSTRACT

Although the sesquiterpenoid juvenile hormone (JH) and the steroidal ecdysteroids are of vital importance to the development and reproduction of insects, our understanding of the evolution of these crucial hormonal regulators in other arthropods is limited. To better understand arthropod hormone evolution and regulation, here we describe the hormonal pathway genes (e.g. those involved in hormone biosynthesis, degradation, regulation and signal transduction) of a new decapod model, the shrimp Neocaridina denticulata. The majority of known insect sesquiterpenoid and ecdysteroid pathway genes and their regulators are contained in the N. denticulata genome. In the sesquiterpenoid pathway, these include biosynthetic pathway components: juvenile hormone acid methyltransferase (JHAMT); hormone binding protein: juvenile hormone binding protein (JHBP); and degradation pathway components: juvenile hormone esterase (JHE), juvenile hormone esterase binding protein (JHEBP) and juvenile hormone epoxide hydrolase (JHEH), with the JHBP, JHEBP and JHEH genes being discovered in a crustacean for the first time here. Ecdysteroid biosynthetic pathway genes identified include spook, phantom, disembodied, shadow and CYP18. Potential hormonal regulators and signal transducers such as allatostatins (ASTs), Methoprene-tolerant (Met), Retinoid X receptor (RXR), Ecdysone receptor (EcR), calponin-like protein Chd64, FK509-binding protein (FKBP39), Broad-complex (Br-c), and crustacean hyperglycemic hormone/molt-inhibiting hormone/gonad-inhibiting hormone (CHH/MIH/GIH) genes are all present in the shrimp N. denticulata. To our knowledge, this is the first report of these hormonal pathways and their regulatory genes together in a single decapod, providing a vital resource for further research into development, reproduction, endocrinology and evolution of crustaceans, and arthropods in general.


Subject(s)
Decapoda/genetics , Ecdysteroids/genetics , Juvenile Hormones/genetics , Signal Transduction , Animals , Decapoda/metabolism , Ecdysteroids/metabolism , Juvenile Hormones/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
12.
Mar Drugs ; 12(3): 1419-37, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24619275

ABSTRACT

The speciose Crustacea is the largest subphylum of arthropods on the planet after the Insecta. To date, however, the only publically available sequenced crustacean genome is that of the water flea, Daphnia pulex, a member of the Branchiopoda. While Daphnia is a well-established ecotoxicological model, previous study showed that one-third of genes contained in its genome are lineage-specific and could not be identified in any other metazoan genomes. To better understand the genomic evolution of crustaceans and arthropods, we have sequenced the genome of a novel shrimp model, Neocaridina denticulata, and tested its experimental malleability. A library of 170-bp nominal fragment size was constructed from DNA of a starved single adult and sequenced using the Illumina HiSeq2000 platform. Core eukaryotic genes, the mitochondrial genome, developmental patterning genes (such as Hox) and microRNA processing pathway genes are all present in this animal, suggesting it has not undergone massive genomic loss. Comparison with the published genome of Daphnia pulex has allowed us to reveal 3750 genes that are indeed specific to the lineage containing malacostracans and branchiopods, rather than Daphnia-specific (E-value: 10⁻6). We also show the experimental tractability of N. denticulata, which, together with the genomic resources presented here, make it an ideal model for a wide range of further aquacultural, developmental, ecotoxicological, food safety, genetic, hormonal, physiological and reproductive research, allowing better understanding of the evolution of crustaceans and other arthropods.


Subject(s)
Decapoda/genetics , Decapoda/metabolism , Aminobenzoates/pharmacology , Animal Husbandry , Animals , Chromosome Mapping , DNA/chemistry , DNA/genetics , DNA, Mitochondrial/genetics , Daphnia , Female , Genes, Homeobox/genetics , Genome , Genomics , Male , Mitochondria/genetics , Models, Genetic , Phylogeny , Sexual Maturation
13.
Gen Comp Endocrinol ; 188: 85-93, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23644152

ABSTRACT

The Pacific beetle cockroach, Diploptera punctata, has proven to be a valuable model insect in the study of the dynamics regulating juvenile hormone (JH) biosynthesis and metabolism, particularly during late nymphal development and reproduction. This stems in part from its unusual mode of reproduction, adenotrophic viviparity, in which females give birth to live young that have been nourished throughout embryonic development by a protein-rich 'milk' secreted by the wall of the brood sac or uterus. In this animal, as in most insects, JH regulates both vitellogenin production and its uptake by developing oocytes. However, JH has an antagonistic effect on embryonic development and following oviposition of the fertilized oocytes into the brood sac, JH production halts, in part through the action of a peptide family, the FGLa allatostatins. JH production remains at a low level throughout pregnancy and is only reinstated at the end of gestation, at which time, the next wave of oocytes begins to develop and enter vitellogenesis. Thus, JH production in this species is precisely regulated, since the appearance of JH at inappropriate times would result in abortion of the embryos. Numerous factors are responsible for the regulation of JH biosynthesis, including peptides, biogenic amines, neurotransmitters, ecdysteroids and second messenger effectors. In this review, we discuss these factors and highlight potentially fruitful areas of future research. Although several of the enzymes of the biosynthetic pathway have been cloned, the precise points of rate limitation remain uncertain. The dissection of the biosynthetic pathway and its control awaits the completion of the genome and transcriptome of this important model insect.


Subject(s)
Arthropods/metabolism , Cockroaches/metabolism , Reproduction/physiology , Animals , Arthropods/physiology , Cockroaches/physiology , Female , Juvenile Hormones/metabolism , Male
14.
Gen Comp Endocrinol ; 188: 16-22, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23480873

ABSTRACT

As the last few decades of work has shown, precise regulation of biosynthesis and release of arthropod hormones is essential to cope with environmental stresses and challenges. In crustaceans and insects, the sesquiterpenoids methyl farnesoate (MF), farnesoic acid (FA) and juvenile hormone (JH) regulate many developmental, physiological, and reproductive processes. In this review, we discuss how comparative genomics has and will impact our views on arthropod endocrinology. We will also highlight the current knowledge of regulation of genes involved in arthropod hormone biosynthesis by microRNAs, and describe the potential insights into arthropod endocrinology, evolution, and adaptation that are likely to come from the study of microRNAs.


Subject(s)
Arthropods/metabolism , Arthropods/physiology , Endocrinology/methods , Genomics/methods , MicroRNAs/genetics , Animals , Arthropods/genetics , High-Throughput Nucleotide Sequencing , Juvenile Hormones/metabolism
15.
iScience ; 26(10): 107832, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37829199

ABSTRACT

Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.

16.
Gen Comp Endocrinol ; 176(3): 347-53, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22245290

ABSTRACT

The larval ring gland and adult corpus allatum (CA) of Drosophila melanogaster produce at least three sesquiterpenoid products: methyl farnesoate (MF), juvenile hormone III (JHIII), and JHIII bisepoxide (JHB(3)). Our understanding of neuropeptide regulation of sesquiterpenoid biosynthesis in D. melanogaster has been hampered by uncertainty over the biosynthetic pathway and the sites of action of regulators. As an approach to defining the neuropeptide regulators, we have used in vivo gene-specific silencing (RNAi). D. melanogaster strains containing an inducible UAS-RNAi construct made to either PheGlyLeu-NH(2)-allatostatin (FGLa/AST) and its cognate receptors Dar-1 and Dar-2 or PISCF-allatostatin (PISCF/AST) or its cognate receptors Drostar-1 or Drostar-2 were expressed in vivo. MF, JHIII and JHB(3) production was measured in ring glands of 3rd instars or corpora allata (CA) of adult females using the radiochemical assay. Reduction in FGLa/AST and Dar-1 or Dar-2 mRNA levels had no effect on MF, JHIII, or JHB(3) production in larvae or adults. Inhibition of Drostar-1 expression resulted in a significant decrease in MF and JHB(3) production in 3rd instars with little effect on JHIII biosynthesis. In contrast, inhibition of Drostar-1 in adult females led to a significant increase in MF and JHIII production. Inhibition of Drostar-2 also reduced MF biosynthesis in 3rd instars. In adults, inhibition of Drostar-2 led to a significant increase in MF and JHIII production but showed no effect on JHB(3). PISCF/AST had no effect on sesquiterpenoid biosynthesis when incubated with 3rd instar ring glands but was stimulatory when incubated with adult glands. Inhibition of short neuropeptide F (sNPF) expression by RNAi or application of sNPF to ring glands had no effect on MF, JHIII, or JHB3 biosynthesis in larvae or adults. Reduction in the neuropeptide Y receptor (NepYr) or neuropeptide F receptor (NPF-R) inhibited JHIII and JHB(3) production in 3rd instars but only reduction in NepYr resulted in JHB(3) reduction in adults.


Subject(s)
Corpora Allata/metabolism , Drosophila melanogaster/metabolism , Juvenile Hormones/biosynthesis , Neuropeptides/metabolism , Sesquiterpenes/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Juvenile Hormones/genetics , Neuropeptides/genetics , RNA/chemistry , RNA/genetics , RNA Interference/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
Gen Comp Endocrinol ; 175(2): 259-69, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22137909

ABSTRACT

Farnesoic acid (FA) and methyl farnesoate (MF) are juvenile hormone-related compounds secreted by the mandibular organ (MO) of crustaceans and play an important role in stimulation of ovarian maturation. To better understand how the MO activity influences female reproduction by secretion of FA and MF, the biosynthesis and release of these two compounds were measured in vitro by the incorporation of l-[(3)H-methyl]methionine into MF and [2-(14)C]acetate into FA by the MO of Homarus americanus. The production of FA is 7.5 times that of MF, and most FA and MF synthesized remained within the gland, and was not released into the surrounding medium. Most FA and MF were synthesized in the anterior fan-fold region of the MO. The rates of biosynthesis of FA and MF were stage-related, with maximal production occurring during secondary vitellogenesis (i.e. stages 4 and 5). A potential juvenoid receptor, retinoid X receptor (RXR), HaRXR, was characterized using PCR cloning techniques. HaRXR belongs to the nuclear hormone receptor superfamily and its deduced amino acid sequence shares a high homology to other RXRs of crustaceans, insects, and vertebrates. Transcripts of HaRXR can be detected in many tissues, and significant high expression level was detected in the MO, especially in the anterior fan-fold region. Expression of HaRXR was also related to reproductive stage, and maximal level of expression was observed at stage 4, in which secondary vitellogenesis is occurring. Changes in transcript level of HaRXR and the rates of FA/MF biosynthesis in the female reproductive cycle indicate that HaRXR and FA/MF may play important roles in crustacean reproduction.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Nephropidae/metabolism , Retinoid X Receptors/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Fatty Acids, Unsaturated/biosynthesis , Female , Molecular Sequence Data , Nephropidae/genetics , Nephropidae/physiology , Ovary/growth & development , RNA, Messenger/metabolism , Reproduction , Retinoid X Receptors/chemistry , Retinoid X Receptors/genetics , Sequence Alignment , Sequence Analysis, Protein
18.
Nat Commun ; 13(1): 3010, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637228

ABSTRACT

Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures.


Subject(s)
Arthropods , Gene Transfer, Horizontal , Animals , Arthropods/genetics , Chilopoda , Genome/genetics , Phylogeny
19.
Gen Comp Endocrinol ; 172(1): 56-61, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21354154

ABSTRACT

Previous studies in Drosophila melanogaster have demonstrated that biosynthesis and regulation of juvenile hormone bisepoxide (JHB(3)) may not be coordinated with that of juvenile hormone (JH III). In this study, we have used the radiochemical assay to confirm the coordinated developmental sesquiterpenoid profile during adult life and analyze the effect of farnesol and farnesoic acid addition on methyl farnesoate, JH III and JHB(3) production by isolated ring glands of Drosophila third instar larvae or corpora allata of adult females. Application of exogenous farnesol or farnesoic acid to glands in vitro stimulated MF and JH III biosynthesis in both larvae and adults. Farnesol and farnesoic acid were inhibitory to JHB(3) biosynthesis in larvae. N-acetyl-geranyl-L-cysteine (NAGC) and S-farnesyl-thioacetic acid (SFTA) are farnesyl pyrophosphatase inhibitors that have specificity towards two different ring gland phosphatases. NAGC and SFTA had no effect on MF or JH III biosynthesis, whereas SFTA inhibited JHB(3) biosynthesis. SFTA shows specificity for a ring gland phosphatase, Phos2680, which has not been previously implicated as a contributor to JHB(3) biosynthesis. This finding suggests that farnesol production occurs in two alternate pools; one pool utilized for MF and JH III production and the other for JHB(3) production. Finally, we have used the UAS-GAL4 system in Drosophila to express juvenile hormone acid methyltransferase (JHAMT) in vivo. In contrast to in vitro studies, JHAMT expression had no effect on MF or JH III biosynthesis but stimulated JHB(3) in both larvae and adults.


Subject(s)
Drosophila melanogaster/metabolism , Juvenile Hormones/biosynthesis , Sesquiterpenes/metabolism , Animals , Animals, Genetically Modified , Dose-Response Relationship, Drug , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Enzyme Inhibitors/pharmacology , Farnesol/pharmacology , Fatty Acids, Unsaturated/pharmacology , Female , Juvenile Hormones/metabolism , Larva/drug effects , Larva/metabolism , Life Cycle Stages/drug effects , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Methyltransferases/genetics , Methyltransferases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism
20.
Proc Natl Acad Sci U S A ; 105(4): 1339-42, 2008 Jan 29.
Article in English | MEDLINE | ID: mdl-18216257

ABSTRACT

Movement in Caenorhabditis elegans is the result of sensory cues creating stimulatory and inhibitory output from sensory neurons. Four interneurons (AIA, AIB, AIY, and AIZ) are the primary recipients of this information that is further processed en route to motor neurons and muscle contraction. C. elegans has >1,000 G protein-coupled receptors (GPCRs), and their contribution to sensory-based movement is largely undefined. We show that an allatostatin/galanin-like GPCR (NPR-9) is found exclusively in the paired AIB interneuron. AIB interneurons are associated with local search/pivoting behavior. npr-9 mutants display an increased local search/pivoting that impairs their ability to roam and travel long distances on food. With impaired roaming behavior on food npr-9 mutants accumulate more intestinal fat as compared with wild type. Overexpression of NPR-9 resulted in a gain-of-function phenotype that exhibits enhanced forward movement with lost pivoting behavior off food. As such the animal travels a great distance off food, creating arcs to return to food. These findings indicate that NPR-9 has inhibitory effects on the AIB interneuron to regulate foraging behavior, which, in turn, may affect metabolic rate and lipid storage.


Subject(s)
Appetitive Behavior , Caenorhabditis elegans Proteins/physiology , Cues , Feeding Behavior , Immobilization , Locomotion , Receptors, Galanin/physiology , Receptors, Neuropeptide Y/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/genetics , Galanin-Like Peptide/physiology , Interneurons/metabolism , Interneurons/physiology , Neuropeptides/physiology , Receptors, Neuropeptide Y/genetics
SELECTION OF CITATIONS
SEARCH DETAIL