Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Photochem Photobiol Sci ; 21(12): 2115-2126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35933640

ABSTRACT

Photoreforming has been shown to accelerate the H2 evolution rate compared to water splitting due to thermodynamically favorable organic oxidation. In addition, the potential to simultaneously produce solar fuel and value-added chemicals is a significant benefit of photoreforming. To achieve an efficient and economically viable photoreforming process, the selection and design of an appropriate photocatalyst is essential. Carbon nitride is promising as a metal-free photocatalyst with visible light activity, high stability, and low fabrication cost. However, it typically exhibits poor photogenerated charge carrier dynamics, thereby resulting in low photocatalytic performance. Herein, we demonstrate improved carrier dynamics in urea-functionalized carbon nitride with in situ photodeposited Ni cocatalyst (Ni/Urea-CN) for ethanol photoreforming. In the presence of 1 mM Ni2+ precursor, an H2 evolution rate of 760.5 µmol h-1 g-1 and an acetaldehyde production rate of 888.2 µmol h-1 g-1 were obtained for Ni/Urea-CN. The enhanced activity is ascribed to the significantly improved carrier dynamics in Urea-CN. The ability of oxygen moieties in the urea group to attract electrons and to increase the hole mobility via a positive shift in the valence band promotes an improvement in the overall carrier dynamics. In addition, high crystallinity and specific surface area of the Urea-CN contributed to accelerating charge separation and transfer. As a result, the electrons were efficiently transferred from Urea-CN to the Ni cocatalyst for H2 evolution while the holes were consumed during ethanol oxidation. The work demonstrates a means by which carrier dynamics can be tuned by engineering carbon nitride via edge functionalization.


Subject(s)
Nickel , Urea , Ethanol , Acetaldehyde
2.
Small ; 17(31): e2100496, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173332

ABSTRACT

Copper-based chalcogenides have been considered as potential photocathode materials for photoelectrochemical (PEC) CO2 reduction due to their excellent photovoltaic performance and favorable conduction band alignment with the CO2 reduction potential. However, they suffer from low PEC efficiency due to the sluggish charge transfer kinetics and poor selectivity, resulting from random CO2 reduction reaction pathways. Herein, a facile heat treatment (HT) of a Cu2 ZnSnS4 (CZTS)/CdS photocathode is demonstrated to enable significant improvement in the photocurrent density (-0.75 mA cm-2 at -0.6 V vs RHE), tripling that of pristine CZTS, as a result of the enhanced charge transfer and promoted band alignment originating from the elemental inter-diffusion at the CZTS/CdS interface. In addition, rationally regulated CO2 reduction selectivity toward CO or alcohols can be obtained by tailoring the surficial sulfur vacancies by HT in different atmospheres (air and nitrogen). Sulfur vacancies replenished by O-doping is shown to favor CO adsorption and the CC coupling pathway, and thereby produce methanol and ethanol, whilst the CdS surface with more S vacancies promotes CO desorption capability with higher selectivity toward CO. The strategy in this work rationalizes the interface charge transfer optimization and surface vacancy engineering simultaneously, providing a new insight into PEC CO2 reduction photocathode design.

3.
Small ; 17(35): e2102023, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34322984

ABSTRACT

Bismuth tungstate (Bi2 WO6 ) thin film photoanode has exhibited an excellent photoelectrochemical (PEC) performance when the tungsten (W) concentration is increased during the fabrication. Plate-like Bi2 WO6 thin film with distinct particle sizes and surface area of different exposed facets are successfully prepared via hydrothermal reaction. The smaller particle size in conjunction with higher exposure extent of electron-dominated {010} crystal facet leads to a shorter electron transport pathway to the bulk surface, assuring a lower charge transfer resistance and thus minimal energy loss. In addition, it is proposed based on the results from conductive atomic force microscopy that higher W concentration plays a crucial role in facilitating the charge transport of the thin film. The "self-doped" of W in Bi2 WO6 will lead to the higher carrier density and improved conductivity. Thus, the variation in the W concentration during a synthesis can be served as a promising strategy for future W based photoanode design to achieve high photoactivity in water splitting application.

4.
Chem Soc Rev ; 49(23): 8584-8686, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33073812

ABSTRACT

Dramatically increased CO2 concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO2 capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary. Thus, it is imperative to provide a timely review, given the fast growth of sophisticated CO2 capture and utilization materials and their implementation. In this work, we critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization. Their industrial applications in pre- and post-combustion CO2 capture as well as utilization were systematically discussed and compared. With our great effort, this review would be of significant importance for academic researchers for obtaining an overall understanding of the current developments and future trends of CCU. This work is bound to benefit researchers in fields relating to CCU and facilitate the progress of significant breakthroughs in both fundamental research and commercial applications to deliver perspective views for future scientific and industrial advances in CCU.

5.
Angew Chem Int Ed Engl ; 57(41): 13613-13617, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30133948

ABSTRACT

Cuprous Oxide (Cu2 O) is a photocatalyst with severe photocorrosion issues. Theoretically, it can undergo both self-oxidation (to form copper oxide (CuO)) and self-reduction (to form metallic copper (Cu)) upon illumination with the aid of photoexcited charges. There is, however, limited experimental understanding of the "dominant" photocorrosion pathway. Both photocorrosion modes can be regulated by tailoring the conditions of the photocatalytic reactions. Photooxidation of Cu2 O (in the form of a suspension system), accompanied by corroded morphology, is kinetically favourable and is the prevailing deactivation pathway. With knowledge of the dominant deactivation mode of Cu2 O, suppression of self-photooxidation together with enhancement in its overall photocatalytic performance can be achieved after a careful selection of sacrificial hole (h+ ) scavenger. In this way, stable hydrogen (H2 ) production can be attained without the need for deposition of secondary components.

6.
Adv Mater ; : e2404618, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853427

ABSTRACT

Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production. This review offers an integrated, multidisciplinary perspective on photocatalytic solar hydrogen production. Specifically, the review presents the existing approaches in photocatalyst and system designs aimed at significantly boosting the solar-to-hydrogen efficiency, while also considering factors of cost and scalability of each approach. In-depth discussions extending beyond the efficacy of material and system design strategies are particularly vital to identify potential hurdles in translating photocatalysis research to large-scale applications. Ultimately, this review aims to provide understanding and perspective of feasible pathways for commercializing photocatalytic solar hydrogen production technology, considering both engineering and economic standpoints.

7.
Sci Total Environ ; 898: 166375, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37598967

ABSTRACT

Photoelectrochemical oxidation (PECO) is a promising advanced technology for treating micropollutants in stormwater. However, it is important to understand its operation prior to practical validation. In this study, we introduced a flow PECO system designed to evaluate its potential for full-scale applications in herbicides degradation, providing valuable insights for future large-scale implementations. The PECO flow reactor demonstrated the ability to treat a larger volume of stormwater (675 mL, approximately 10 times more than previous batch experiments) with effective removal rates of 92 % for diuron and 22 % for atrazine over 6 h of operation at 2 V. To address the large volume issue in stormwater treatment, a multiple module parallel application design is being considered to increase the treatment capacity of the PECO flow reactor. During the flow reactor operations, flow rate was found to have a notable impact on removal performance, particularly for diuron. At a flow rate of 610 mL min-1, approximately 90 % removal of diuron was achieved, while at 29 mL min-1, the removal efficiency decreased to 60 %. While light intensity had minimal effect on diuron degradation (all settings achieved over 90 % removal), it enhanced atrazine degradation from 9 % to 31 % with an increase in intensity from 63 mW cm-2 to 144 mW cm-2. Remarkably, the PECO flow system exhibited excellent removal performance (>90 % removal) for diuron even at extremely high initial pollutant concentrations (240 µg L-1), demonstrating its capacity to handle varying contaminant loads in stormwater. Energy consumption analysis revealed that flow rate as the primary factor influenced the specific energy consumption rate. Higher flow rate (e.g., 610 mL min-1) were preferable in flow reactor due to its well-balanced performance between removal and energy consumption. These findings confirm that the PECO flow system offers an efficient and promising approach for stormwater treatment applications.

8.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36727675

ABSTRACT

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

9.
J Hazard Mater ; 436: 129239, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739758

ABSTRACT

Although advanced oxidation processes (AOPs) such as photoelectrochemical oxidation (PECO), electrochemical oxidation (ECO) and photocatalytic oxidation (PCO), have shown potential for wastewater treatment, their application in urban stormwater has rarely been studied. This paper explored their major degradation mechanisms and possible degradation pathways of herbicides for stormwater applications (with treatment difficulty compared with wastewater). PECO and ECO showed excellent removal performance for diuron (100 %) and moderate for atrazine (around 35 %) under a relatively low potential (2 V). Superoxide radical (·O2-) has been found to be the dominant reactive species. Besides, there is evidence to indicate that hydroxyl radical (·OH) and free chlorine (·Cl) also support the degradation reactions. Up to 11 possible intermediate products have been identified during both diuron and atrazine degradation processes under PECO operation. Based on the proposed possible degradation pathways, the intermediates presented during PECO are species with further oxidation. As evidenced by the undetected species of more oxidized intermediates for ECO and PCO, some further degradation steps are missing, which demonstrate their lower oxidation capacity leading to incomplete decomposition of stormwater herbicides. Thus, PECO has a great potential to be developed into a passive stormwater degradation system due to its strong oxidation potential.


Subject(s)
Atrazine , Herbicides , Water Pollutants, Chemical , Water Purification , Diuron , Herbicides/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
10.
Adv Mater ; 34(29): e2201670, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35606154

ABSTRACT

Ammonia is a key chemical feedstock for industry as well as future carbon-free fuel and transportable vector for renewable energy. Photoelectrochemical (PEC) ammonia synthesis from NOx reduction reaction (NOx RR) provides not only a promising alternative to the energy-intensive Haber-Bosch process through direct solar-to-ammonia conversion, but a sustainable solution for balancing the global nitrogen cycle by restoring ammonia from wastewater. In this work, selective ammonia synthesis from PEC NOx RR by a kesterite (Cu2 ZnSnS4 [CZTS]) photocathode through loading defect-engineered TiOx cocatalyst on a CdS/CZTS photocathode (TiOx /CdS/CZTS) is demonstrated. The uniquely designed photocathode enables selective ammonia production from NOx RR, yielding up to 89.1% Faradaic efficiency (FE) (0.1 V vs reversible hydrogen electrode (RHE)) with a remarkable positive onset potential (0.38 V vs RHE). By tailoring the amount of surface defective Ti3+ species, the adsorption of reactant NO3 - and * NO2  intermediate is significantly promoted while the full coverage of TiOx also suppresses NO2 - liberation as a by-product, contributing to high ammonia selectivity. Further attempts on PEC ammonia synthesis from simulated wastewater show good FE of 64.9%, unveiling the potential of using the kesterite-based photocathode for sustainably restoring ammonia from nitrate-rich wastewater.

11.
ACS Appl Mater Interfaces ; 13(42): 49916-49926, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34652901

ABSTRACT

Photoreforming is a promising alternative to water splitting for H2 generation due to the favorable organic oxidation half-reaction and the potential to simultaneously produce solar fuel and value-added chemicals. Recently, carbon nitride has received significant attention as an inexpensive photocatalyst for the photoreforming process. However, the application of carbon nitride continues to be hampered by its poor photocatalytic performance. Herein, we report for the first time a synergistic modification of an in situ photodeposited Ni cocatalyst on carbon nitride via cyanamide functionalization and solid/liquid interfacial charge-induced activation using excess Ni2+ ions. Synergism between the cyanamide functionalization and charge-induced activation by the excess Ni2+ ions invokes enhanced activity, selectivity, and stability during ethanol photoreforming. A H2 evolution rate of 2.32 mmol h-1 g-1 in conjunction with an acetaldehyde production rate of 2.54 mmol h-1 g-1 was attained for the Ni/NCN-CN. The H2 evolution rate and elevated acetaldehyde selectivity (above 98%) remained consistent under prolonged light illumination. To understand the origin of the complementary promotional effects, the contributions of cyanamide groups and excess Ni2+ ions to selective ethanol photoreforming are decoupled and systematically investigated. The cyanamide functionality on carbon nitride was found to promote hole scavenging for the ethanol oxidation reaction, thereby enabling effective electron transfer to the Ni cocatalyst for H2 evolution. Concomitantly, excess Ni2+ ions remaining in solution created a positively charged environment on the photocatalyst surface, which improved charge carrier utilization and ethanol adsorption. The work highlights the importance of both carbon nitride functionality and charge on the photocatalyst surface in developing a selective photocatalytic reforming system.

12.
Water Res ; 190: 116783, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33387957

ABSTRACT

The solar driven advanced oxidation process (AOP) has the potential to be developed as a passive stormwater post-treatment method. Despite its widespread studies in wastewater treatment, the applicability of the process for micropollutant removal in stormwater (which has very different chemical properties from wastewater) is still unknown. This paper investigated the feasibility of three different AOP processes for the degradation of two herbicides (diuron and atrazine) in pre-treated stormwater: (i) photoelectrochemical oxidation (PECO), (ii) electrochemical oxidation (ECO), and (iii) photocatalytic oxidation (PCO). The durability of different anode materials, the effects of catalyst loading, and solar photo- and thermal impacts under different applied voltages were studied. Boron-doped diamond (BDD) was found to be the most durable anode material compared to carbon fiber and titanium foil for long-term operation. Due to the very low electroconductivity of stormwater, a high voltage was required, causing severe oxidation of the carbon fiber material. PECO achieved the best degradation results compared to ECO and PCO, with over 90% degradation of both herbicides in 2 h under 5 V, following a first-order decay process (with a half-life value of 0.40 h for diuron and 0.58 h for atrazine). The voltage increase had a positive impact on the oxidation processes, with 5 V found to be the optimal applied voltage, while catalyst loading had a negligible effect. Interestingly, the solar thermal effect plays a dominant role in enhancing the performance of the PECO process, which indicates the potential of integrating a photovoltaic chamber with a PECO system to harness both the light and heat of solar energy for stormwater treatment.


Subject(s)
Herbicides , Water Pollutants, Chemical , Water Purification , Diamond , Electrodes , Feasibility Studies , Herbicides/analysis , Oxidation-Reduction , Rain , Water Pollutants, Chemical/analysis , Water Supply
13.
Adv Mater ; 32(18): e1904717, 2020 May.
Article in English | MEDLINE | ID: mdl-31814196

ABSTRACT

Photocatalytic and photoelectrochemical processes are two key systems in harvesting sunlight for energy and environmental applications. As both systems are employing photoactive semiconductors as the major active component, strategies have been formulated to improve the properties of the semiconductors for better performances. However, requirements to yield excellent performances are different in these two distinctive systems. Although there are universal strategies applicable to improve the performance of photoactive semiconductors, similarities and differences exist when the semiconductors are to be used differently. Here, considerations on selected typical factors governing the performances in photocatalytic and photoelectrochemical systems, even though the same type of semiconductor is used, are provided. Understanding of the underlying mechanisms in relation to their photoactivities is of fundamental importance for rational design of high-performing photoactive materials, which may serve as a general guideline for the fabrication of good photocatalysts or photoelectrodes toward sustainable solar fuel generation.

14.
ACS Appl Mater Interfaces ; 12(7): 8324-8332, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31934743

ABSTRACT

Metal and metal-oxide particles are commonly photodeposited on photocatalysts by reduction and oxidation reactions, respectively, consuming charges that are generated under illumination. This study reveals that amorphous MoOxSy clusters can be easily photodeposited at the tips of CdS nanorods (NRs) by in situ photodeposition for the first time. The as-prepared MoOxSy-decorated CdS samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP) to determine the composition and the possible formation pathways of the amorphous MoOxSy clusters. The MoOxSy-tipped CdS samples exhibited better hydrogen evolution performance than pure CdS under visible-light illumination. The enhanced activity is attributed to the formation of intimate interfacial contact between CdS and the amorphous MoOxSy clusters, which facilitates the charge separation and transfer. Through time-resolved photoluminescence (TRPL) measurements, it was clearly observed that all MoOxSy-decorated CdS samples with different loadings of MoOxSy showed a faster PL decay when compared to pure CdS, resulting from the effective trapping of photogenerated electrons by the MoOxSy clusters. Kelvin probe force microscopy (KPFM) was further used to study the surface potentials of pure CdS NRs and MoOxSy-decorated CdS NRs. A higher surface potential on MoOxSy-decorated CdS NRs was observed in the dark, indicating that the loading of MoOxSy resulted in a lower surface work function compared to pure CdS NRs. This contributed to the effective electron trapping and separation, which was also reflected by the increased photoelectrochemical response. Thus, this study demonstrates the design and facile synthesis of MoOxSy-tipped CdS NRs photocatalysts for efficient solar hydrogen production.

15.
Chempluschem ; 83(10): 934-940, 2018 Oct.
Article in English | MEDLINE | ID: mdl-31950612

ABSTRACT

Pulsed electrodeposition has been introduced to deposit ultrathin flakes of Co3 O4 nanocrystals on ZnO nanorods. By fixing the seeding process, the scaffolding function of ZnO nanorods was studied by varying deposition times (30 s, 60 s, and 90 s) of Co3 O4 at a nucleation current of -1.0 mA cm-2 . The amount of deposited Co3 O4 has a strong influence on the oxygen evolution performance with ZnO scaffolds. To deliver a current density of 10.0 mA cm-2 in neutral solutions (0.5 M K2 SO4 ), the presence of ZnO scaffold electrodes negatively shifted the overpotential by ∼200 mV. In particular, the Co3 O4 /ZnO hybrid nanostructured electrode (60 s) exhibits the lowest onset potential of 1.5 V (vs. reversible hydrogen electrode, RHE). Electrochemical impedance spectra and double layer capacitance showed that the enhanced oxygen evolution activities originated from the improved charge transfer capability and the increased electrochemically active interface between Co3 O4 and ZnO.

16.
Chempluschem ; 83(10): 889, 2018 Oct.
Article in English | MEDLINE | ID: mdl-31950615

ABSTRACT

Invited for this month's cover are the collaborative groups of Dr. Yun Hau Ng at University of New South Wales, Australia and Dr. Yiming Tang at South China Normal University, China. The front cover picture shows ultrathin Co3 O4 nanoflakes that are deposited on ZnO nanorods by pulsed electrodeposition. The performance of the nanostructured hybrid Co3 O4 /ZnO anode in electrochemical O2 evolution is better than that of neat Co3 O4 . Well-aligned one-dimensional ZnO nanorod arrays are integrated as a scaffold which functions as a "highway" to facilitate improved charge transfer, while the porosity of the anode material allows the penetration of the electrolyte, thus promoting efficient utilization of the catalytically active species. Read the full text of the article at 10.1002/cplu.201800218.

18.
ACS Appl Mater Interfaces ; 8(11): 7030-6, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26918821

ABSTRACT

Ambient fine particulate matter (PM) affects both human health and climate. To reduce the PM2.5 (mass of particles below 2.5 µm in diameter) concentration of an individual's living environment, ionic liquid-modified polyacrylonitrile (PAN) nanofibers with superior PM2.5 capture capacity were prepared by electrospinning. Ionic liquid diethylammonium dihydrogen phosphate (DEAP) with high viscosity and hydrophilicity was involved during the electrospinning process. Observations by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and water contact angle measurement suggested that the modification of DEAP on PAN effectively altered the morphology (roughness) and surface properties (hydrophilicity) of the PAN nanofibers. The PM2.5 capture measurement was performed in a closed and static system, which mimicked the static hazy weather without wind flow. As a result, DEAP-modified PAN nanofibers exhibited significantly enhanced PM2.5 capture capacity compared to that of the bare PAN nanofibers. This can be attributed to the improved surface roughness (i.e., improved adsorption sites), hydrophilicity, and dipole moment of PAN upon DEAP modification.

SELECTION OF CITATIONS
SEARCH DETAIL