Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Biochem Mol Toxicol ; 38(1): e23521, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37706603

ABSTRACT

N-substitued anthranilic acid derivatives are commonly found in the structure of many biologically active molecules. In this study, new members of hydrazones derived from anthranilic acid (1-15) were synthesized and investigated their effect on some metabolic enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). Results indicated that all the molecules exhibited potent inhibitory effects against all targets as compared to the standard inhibitors, revealed by IC50 values. Ki values of compounds for AChE, BChE, and α-Gly enzymes were obtained in the ranges 66.36 ± 8.30-153.82 ± 13.41, 52.68 ± 6.38-113.86, and 2.13 ± 0.25-2.84 nM, respectively. The molecular docking study was performed for the most active compounds to the determination of ligand-enzyme interactions. Binding affinities of the most active compound were found at the range of -9.70 to -9.00 kcal/mol for AChE, -11.60 to -10.60 kcal/mol for BChE, and -10.30 to -9.30 kcal/mol for α-Gly. Molecular docking simulations showed that the novel compounds had preferential interaction with AChE, BChE, and α-Gly. Drug-likeness properties and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyzes of all synthesized compounds (1-15) were estimated and their toxic properties were evaluated as well as their therapeutic properties. Moreover, molecular dynamics simulations were carried out to understand the accuracy of the most potent derivatives of docking studies.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , ortho-Aminobenzoates , Butyrylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Molecular Docking Simulation , Hydrazones/pharmacology , Structure-Activity Relationship , Glycoside Hydrolases/metabolism , Molecular Structure
2.
Biotechnol Appl Biochem ; 71(1): 223-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964505

ABSTRACT

The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.


Subject(s)
Carbonic Anhydrase I , Carbonic Anhydrase Inhibitors , Humans , Carbonic Anhydrase I/metabolism , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Benzothiazoles , Sulfanilamide , Molecular Structure
3.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36103032

ABSTRACT

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Subject(s)
Aldehyde Reductase , Hydrazones , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Hydrazones/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Benzaldehydes/pharmacology
4.
Chem Biodivers ; 20(10): e202301134, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37695993

ABSTRACT

Quinazolinones, which represent an important part of nitrogen-containing six-membered heterocyclic compounds, are frequently used in drug design due to their wide biological activity properties. Therefore, the novel quinazolinones were synthesized from the reaction of acylated derivatives of 4-hydroxy benzaldehyde with 3-amino-2-alkylquinazolin-4(3H)-ones with good yields (85-94 %) and their structures were characterized using Fourier-transform Infrared (FT-IR), Nuclear Magnetic Resonance (1 H-NMR, 13 C-NMR), and High-Resolution Mass Spectroscopy (HR-MS). As the application of the synthesized compounds, their inhibition properties of the synthesized compounds on α-Glucosidase (α-Glu), Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE), and Carbonic anhydrase I-II (hCA I-II) metabolic enzymes were investigated. All compounds showed inhibition at nanomolar level with the Ki values in the range of 12.73±1.26-93.42±9.44 nM for AChE, 8.48±0.92-25.84±2.59 nM for BChE, 66.17±5.16-818.06±44.41 for α-Glu, 2.56±0.26-88.23±9.72 nM for hCA I, and 1.68±0.14-85.43±7.41 nM for hCA II. Molecular docking study was performed to understand the interactions of the most potent compounds with corresponding enzymes. Also, absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties of the compounds were investigated.

5.
Arch Pharm (Weinheim) ; 356(11): e2300423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736677

ABSTRACT

In this study, new quinazoline-chromene hybrid compounds were synthesized. The cytotoxic effects on cell viability of the hybrid compounds were tested against A549 human lung adenocarcinoma and BEAS-2B healthy bronchial epithelial cell lines in vitro. In addition, the ability of the active compounds to inhibit cell migration was tested. Molecular docking studies were performed to evaluate the ligand-protein interactions, and molecular dynamics simulations were performed to determine the interactions and stability of ligand-protein complexes. In silico absorption, distribution, metabolism, and excretion (ADME) studies were conducted to estimate the drug-likeness of the compounds. Compounds 4 (IC50 = 51.2 µM) and 5 (IC50 = 44.2 µM) were found to be the most active agents against A549 cells. They are found to be more selective against A549 cells than the reference drug doxorubicin. They also have the ability to significantly inhibit cell migration. They have the best docking scores against epidermal growth factor receptor (EGFR) (-11.300 and -11.226 kcal/mol) and vascular endothelial growth factor receptor 2 (VEGFR2) (-10.987 and -11.247 kcal/mol), respectively. In MD simulations, compounds 4 and 5 have strong hydrogen bond interactions above 80% of simulation times and showed a low ligand root mean square deviation (RMSD) around 2 Å. According to the ADME analysis, compounds 4 and 5 exhibit excellent drug-likeness and pharmacokinetic characteristics.


Subject(s)
Antineoplastic Agents , Benzopyrans , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Benzopyrans/pharmacology , Quinazolines/pharmacology , Ligands , Vascular Endothelial Growth Factor A/pharmacology , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Dynamics Simulation , Molecular Structure , Cell Proliferation , Cell Line, Tumor
6.
Drug Dev Res ; 84(2): 275-295, 2023 04.
Article in English | MEDLINE | ID: mdl-36598092

ABSTRACT

Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.


Subject(s)
Acetic Acid , Aldehyde Reductase , Aldehyde Reductase/metabolism , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Humans , Female
7.
Drug Dev Res ; 83(3): 586-604, 2022 05.
Article in English | MEDLINE | ID: mdl-34585414

ABSTRACT

A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.


Subject(s)
Aldehyde Reductase , Enzyme Inhibitors , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Quinazolinones , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL