Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 30(13): e202303499, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38116871

ABSTRACT

A novel synthetic approach has been employed to synthesize a series of new nitronyl nitroxides: 2-(1-propyl-1H-imidazol-5-yl)- (Ln-Pr ), 2-(1-isopropyl-1H-imidazol-5-yl)- (Li-Pr ) and 2-(1-butyl-1H-imidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (Ln-Bu ). The reaction of Cu(hfac)2 with LR in a 1 : 2 ratio yields mononuclear heterospin complexes [Cu(hfac)2 (LR )2 ] (LR =Ln-Pr , Li-Pr , Ln-Bu ), which have a similar crystal structure to the "jumping" crystals [Cu(hfac)2 (LMe )2 ] that exhibit chemomechanical activity. It was shown that an increase in the alkyl substituent R leads to changes in the crystal packing of the molecules and the absence of chemomechanical activity. Furthermore, it was found that two polymorph modifications of the heterospin complex [Cu(hfac)2 (Ln-Pr )2 ] can be obtained, and magnetic properties of [Cu(hfac)2 (Ln-Pr )2 ] strongly depend on the angle between the planes of the paramagnetic fragment O•-N-C=N→O and the imidazole ring in Ln-Pr .

2.
Nitric Oxide ; 143: 9-15, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38096947

ABSTRACT

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds LCF3 and LMe, with LMe inducing temporary bradycardia and hypotension specifically in female rats, and LCF3 causing significant blood pressure reduction followed by rebound in females compared to milder effects in males. Mechanistic insights point towards ß1 adrenoceptor blockade as an underlying mechanism, supported by experiments on isolated rat atria. This research underscores the interplay between structure, cardiovascular effects and gender-specific responses, offering insights for therapeutic strategies for treating free radical-associated cardiovascular disorders.


Subject(s)
Antihypertensive Agents , Nitrogen Oxides , Male , Rats , Female , Animals , Nitrogen Oxides/chemistry , Free Radicals , Pyridines
3.
Inorg Chem ; 56(19): 11729-11737, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28933835

ABSTRACT

Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.

4.
Chemistry ; 22(41): 14598-604, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27539325

ABSTRACT

It was shown that dipole-stabilized paramagnetic carbanion lithiated 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide can be attached in a nucleophilic manner to either isolated or conjugated aldonitrones of the 2,5-dihydroimidazole 3-oxide and 2H-imidazole 1-oxide series to afford adducts the subsequent oxidation of which leads to polyfunctional mono- and diradicals. According to XRD, at least two polymorphic modifications can be formed during crystallization of the resulting paramagnetic compounds, and for each of them, geometric parameters of the molecules are similar. An EPR spectrum of the diradical in frozen toluene has a complicated lineshape, which can be fairly well reproduced by using X-ray diffraction structural analysis and the following set of parameters: D=14.9 mT, E=1.7 mT; tensor a((14) N)=[0.260 0.260 1.625] mT, two equivalent tensors for the nitronyl nitroxide moiety a((14) N)=[0.198 0.198 0.700] mT, and g≈2.007. According to our DFT and ab initio calculations, the intramolecular exchange in the diradical is very weak and most likely ferromagnetic.

5.
Inorg Chem ; 53(2): 802-9, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24364815

ABSTRACT

Metal complexation reactions of N-t-butyl-N-oxidanyl-2-amino(nitronyl nitroxide) diradical (1) with M(hfac)2 (M: Mn or Cu) were investigated. These reactions were found to be very sensitive to the type of metal ion employed. Complex [Mn(hfac)2·1], consisting of Mn(hfac)2 and diradical 1, was readily prepared by mixing the components. However, the reaction of Cu(hfac)2 with 1 or N-t-butyl-N-oxidanyl-2-amino(iminonitroxide) diradical (2) involved the reduction of the diradical to the N-t-butyl-N-oxidanide-2-amino(iminonitroxide) radical anion (3) and finally produced the polymer-chain complex [Cu2(hfac)2·32·Cu(hfac)2]n. The structures of these complexes were elucidated by X-ray analysis, and their magnetic properties were investigated in detail. The temperature dependence of χpT (χp: magnetic susceptibility) for [Mn(hfac)2·1] exhibited a strong antiferromagnetic interaction (H = -2JS1·S2, J/kB = -217 K) between the Mn(II) spin (S = 5/2) and the diradical 1 spin (S = 1). However, the χpT-T plots for [Cu2(hfac)2·32·Cu(hfac)2]n indicated the presence of several magnetic interactions: a large ferromagnetic interaction (J/kB = 510 K) between iminonitroxide 3 and the imino-coordinating Cu(II) atom, a moderately large ferromagnetic interaction (J/kB = 58 K) between the iminonitroxide and (iminonitroxide oxygen)-coordinating Cu(hfac)2, and a weak antiferromagnetic interaction (J/kB = -1.4 K) between the two Cu(hfac)-3 moieties within a Cu2O2 square.

6.
J Phys Chem A ; 117(30): 6483-8, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23806031

ABSTRACT

We report the study of light-induced magnetostructural anomalies in a polymer chain complex of Cu(hfac)2 (hfac = hexafluoroacetylacetonate) with an unusual acyclic tert-butylpyrazolylnitroxide radical (Ltert(Me)) using EPR. This complex ([Cu(hfac)2Ltert(Me)]n) belongs to the family of thermo- and photoswitchable molecular magnets "breathing crystals". Compared to previously studied breathing crystals with nitronyl nitroxides, [Cu(hfac)2Ltert(Me)]n shows much weaker absorption bands in the visible spectral region and therefore is superior for optical manipulation of the spin states. Illumination with light (λ ≈ 540 nm) at cryogenic temperatures leads to formation of a metastable weakly coupled spin state, which relaxes to the ground strongly coupled spin state on a time scale of hours. These phenomena are in many aspects similar to the light-induced excited spin state trapping (LIESST) well-known for spin-crossover compounds. Remarkably, the photoinduced spin state in [Cu(hfac)2Ltert(Me)]n is metastable at temperatures up to TLIESST ≈ 60 K, which is a significant improvement compared to that of previously studied breathing crystals with nitronyl nitroxides (TLIESST ≈ 20 K). We describe LIESST-like behavior observed in [Cu(hfac)2Ltert(Me)]n and discuss possible reasons for the increased stability of the photoinduced spin state.

7.
J Phys Chem A ; 117(33): 8065-72, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23895219

ABSTRACT

The ESR spectrum of compact nitroxide (NO)-substituted nitronyl nitroxide (NN) triplet diradical N-tert-butyl-N-oxidanyl-2-amino-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (1) was recorded in solid argon matrix at 15 K. The zero-field splitting (ZFS) parameters of 1 were derived from the recorded ESR spectrum: |D| = 0.0248 cm(-1) and E = 0.0025 cm(-1). Quantum chemical calculations have been performed using DFT and multiconfigurational ab initio (CAS) methods in order to establish equilibrium geometries of the conformational isomers resulting from twisted conformations of NO and NN moieties. The ZFS parameters of 1 were calculated at these levels of theory to test validity of the calculated structures. The calculation results were analyzed using the measured ZFS parameters and magnetic and structural data from the previous studies (Suzuki, S.; et al. J. Am. Chem. Soc. 2010, 132, 15908; Tretyakov, E. V.; et al. Russ. Chem. Bull. 2011, 60, 2608). It was found that the ab initio method is most successful for accurate predictions of molecular and magnetic parameters. Diradical 1 has only one stable enantiomeric pair in pseudoeclipsed conformations. The two chiral isomers exist in racemic crystals 1 and in solid matrices with molecular parameters close to those attributed to a free molecule. The analysis of the spin density distribution suggests that one unpaired electron occupies NO group at the equilibrium geometry, whereas the torsion of NO group governs the spin density distribution of the second unpaired electron on a conjugated fragment in NN group. The increase in planarity by torsion of NO group enhances the trimethylenemethane-type properties and, therefore, gives rise to larger ferromagnetic exchange interaction. More planar equilibrium geometry and greater (three times) exchange interaction constant J were predicted for hypothetical diradical 1a, where bulky tert-butyl group is replaced by a methyl group in the nitroxide fragment.

8.
Inorg Chem ; 51(17): 9385-94, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22892007

ABSTRACT

Breathing crystals based on polymer-chain complexes of Cu(hfac)(2) with nitroxides exhibit thermally and light-induced magnetostructural anomalies in many aspects similar to a spin crossover. In the present work, we report the synthesis and investigation of a new family of Cu(hfac)(2) complexes with tert-butylpyrazolylnitroxides and their nonradical structural analogues. The complexes with paramagnetic ligands clearly exhibit structural rearrangements in the copper(II) coordination units and accompanying magnetic phenomena characteristic for breathing crystals. Contrary to that, their structural analogues with diamagnetic ligands do not undergo rearrangements in the copper(II) coordination environments. This confirms experimentally the crucial role of paramagnetic ligands and exchange interactions between them and copper(II) ions for the origin of magnetostructural anomalies in this family of molecular magnets.

9.
Dalton Trans ; 49(18): 5851-5858, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32301949

ABSTRACT

Copper(ii) complexes with stable nitroxide radicals are capable of magnetostructural spin-crossover like anomalies induced by external stimuli. Photoswitching in such systems is particularly important; however, retrieving the properties of photoinduced states is challenging and requires development of novel approaches. In this work, we investigate the exchange interactions in metastable photoinduced states of two compounds containing copper(ii)-nitroxide dyads. Using Electron Paramagnetic Resonance (EPR) with photoexcitation we obtain temperature dependence of magnetic susceptibility in the photoinduced state and estimates for the corresponding values of exchange coupling in the studied complexes. The interplay between intra- and inter-cluster exchange couplings is considered and analyzed. The proposed methodology is applicable also to other photoswitchable exchange-coupled systems.

SELECTION OF CITATIONS
SEARCH DETAIL