Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemistry ; 21(17): 6381-5, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25771988

ABSTRACT

Oxidation of RNA hairpin models corresponding to anticodon stem-loop (ASL) of transfer RNA led to RNA damage consisting solely of a unique loop guanine oxidation. Manganese porphyrin/oxone treatment of RNA resulted in dehydroguanidinohydantoin (DGh; major) and/or spiroiminodihydantoin (Sp) lesions. Ribose damage was not observed. This two-electron transfer oxidation reaction allowed the identification of guanine oxidation products for further study of RNA species carrying a unique lesion at a single G to investigate their biological impact.


Subject(s)
Guanidines/chemistry , Guanosine/analogs & derivatives , Guanosine/chemistry , Hydantoins/chemistry , Models, Chemical , RNA, Transfer/chemistry , Spiro Compounds/chemistry , Anticodon , Guanidines/toxicity , Guanosine/toxicity , Hydantoins/toxicity , Oxidation-Reduction , RNA, Transfer/metabolism , Ribose/toxicity , Spiro Compounds/toxicity
2.
Org Biomol Chem ; 13(8): 2375-84, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25564351

ABSTRACT

Homopurine phosphorothioate analogs of DNA, possessing all phosphorus atoms of RP configuration ([All-RP-PS]-DNA), when interact with appropriate complementary RNA or (2'-OMe)-RNA templates, form parallel triplexes or parallel duplexes of very high thermodynamic stability. The present results show that T-LNA or 5-Me-C-LNA units introduced into the parallel Hoogsteen-paired (2'-OMe)-RNA strands (up to four units in the oligomers of 9 or 12 nt in length) stabilize these parallel complexes. At neutral pH, dodecameric parallel duplexes have Tm values of 62-68 °C, which are by 4-10 °C higher than Tm for the reference duplex (with no LNA units present), while for the corresponding triplexes, Tm values exceeded 85 °C. For nonameric parallel duplexes, melting temperatures of 38-62 °C were found and (2'-OMe)-RNA oligomers containing 5-Me-C-LNA units stabilized the complexes more efficiently than the T-LNA containing congeners. In both series the stability of the parallel complexes increased with an increasing number of LNA units present. The same trend was observed in experiments of reverse transcription RNA→DNA (using AMV RT reverse transcriptase) where the formation of parallel triplexes (consisting of an RNA template, [All-RP-PS]-DNA nonamer and Hoogsteen-paired (2'-OMe)-RNA strands containing the LNA units) led to the efficient inhibition of the process. Under the best conditions checked (four 5-Me-C-LNA units, three-fold excess over the RNA template) the inhibition was 94% effective, compared to 71% inhibition observed in the reference system with the Hoogsteen-paired (2'-OMe)-RNA strand carrying no LNA units. This kind of complexation may "arrest" harmful RNA oligomers (e.g., viral RNA or mRNA of unwanted proteins) and, beneficially, exclude them from enzymatic processes, otherwise leading to viral or genetic diseases.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA/chemistry , Reverse Transcription , Temperature
3.
RSC Adv ; 12(41): 26815-26824, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36320848

ABSTRACT

Oxathiaphospholane derivatives of 2'-OMe-ribonucleosides and 2'-O-TBDMS-ribonucleosides (MN-OTP and TN-OTP, respectively; nucleobase protected) were synthesized and separated into pure P-diastereomers. X-ray analysis showed the R P absolute configuration of the phosphorus atom in the fast-eluting diastereomer of TA-OTP. The fast- and slow-eluting P-diastereomers of MN-OTP and TN-OTP were used in the solid-phase synthesis of phosphorothioate dinucleotides (MNPST and NPST, respectively), which were subsequently hydrolyzed with R P-selective phosphodiesterase svPDE and S P-selective nuclease P1 to determine the absolute configuration of the phosphorus atoms. P-Stereodefined phosphorothioate ([PS]) 10-mer chimeric oligomers [PS]-{DNA:(2'-OMe)-RNA} and isosequential [PS]-{DNA:RNA} containing two MNPS or NPS units were synthesized. Melting experiments performed for their complexes with Watson-Crick paired DNA matrix showed that MNPS or NPS units decrease the thermal stability of the duplexes (ΔT m = -0.5 ÷ -5.5 °C per modification) regardless of the absolute configuration of the P-atoms. When the (2'-OMe)-RNA matrix was used an increase in T m was noted in all cases (ΔT m = +1 ÷ +7 °C per modification). The changes in thermal stability of the duplexes formed by [PS]-chimeras with DNA and (2'-OMe)-RNA matrices do not correlate with the absolute configuration of the phosphorus atoms.

4.
RSC Adv ; 8(44): 24942-24952, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-35542141

ABSTRACT

Enantiomerically pure, protected acyclic nucleosides of the GNA type (glycol nucleic acids) (GN'), obtained from (R)-(+)- and (S)-(-)-glycidols and the four canonical DNA nucleobases (Ade, Cyt, Gua and Thy), were transformed into 3'-O-DMT-protected 2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane derivatives (OTP-GN') containing a second stereogenic center at the phosphorus atom. These monomers were chromatographically separated into P-diastereoisomers, which were further used for the synthesis of P-stereodefined "dinucleoside" phosphorothioates GNPST (GN = GA, GC, GG, GT). The absolute configuration at the phosphorus atom for all eight GNPST was established enzymatically and verified chemically, and correlated with chromatographic mobility of the OTP-GN' monomers on silica gel. The GNPS units (derived from (R)-(+)-glycidol) were introduced into self-complementary PS-(DNA/GNA) octamers of preselected, uniform absolute configuration at P-atoms. Thermal dissociation experiments showed that the thermodynamic stability of the duplexes depends on the stereochemistry of the phosphorus centers and relative arrangement of the GN units in the oligonucleotide strands. These results correlate with the changes of conformation assessed from circular dichroism spectra.

SELECTION OF CITATIONS
SEARCH DETAIL