Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
2.
PLoS Pathog ; 20(6): e1012351, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924030

ABSTRACT

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.

3.
PLoS Pathog ; 17(4): e1009522, 2021 04.
Article in English | MEDLINE | ID: mdl-33872331

ABSTRACT

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, pDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


Subject(s)
Dendritic Cells/virology , HIV Infections/virology , HIV/immunology , Interferon-alpha/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Flow Cytometry , HIV/genetics , HIV/physiology , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , HIV Infections/immunology , Humans , Myeloid Cells/immunology , Myeloid Cells/virology , Phenotype
4.
Hum Vaccin Immunother ; 20(1): 2331486, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38564321

ABSTRACT

Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , Humans , Pandemics , Neoplasms/prevention & control , COVID-19/prevention & control , Global Health , Immunotherapy/methods
5.
Cell Genom ; 4(5): 100541, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38663408

ABSTRACT

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Monocytes , Adult , Female , Humans , Male , CpG Islands/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Middle Aged , Aged
6.
J Immunother Cancer ; 12(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663935

ABSTRACT

We describe three cases of critical acute myositis with myocarditis occurring within 22 days of each other at a single institution, all within 1 month of receiving the initial cycle of the anti-PD-1 drug pembrolizumab. Analysis of T cell receptor repertoires from peripheral blood and tissues revealed a high degree of clonal expansion and public clones between cases, with several T cell clones expanded within the skeletal muscle putatively recognizing viral epitopes. All patients had recently received a COVID-19 mRNA booster vaccine prior to treatment and were positive for SARS-CoV2 Spike antibody. In conclusion, we report a series of unusually severe myositis and myocarditis following PD-1 blockade and the COVID-19 mRNA vaccination.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Myocarditis , Myositis , SARS-CoV-2 , Aged , Female , Humans , Male , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/adverse effects , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Myocarditis/chemically induced , Myositis/chemically induced , SARS-CoV-2/immunology , Vaccination/adverse effects , Aged, 80 and over
7.
Nat Commun ; 14(1): 321, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658158

ABSTRACT

IFNγ is an immune mediator with concomitant pro- and anti-tumor functions. Here, we provide evidence that IFNγ directly acts on intra-tumoral CD8 T cells to restrict anti-tumor responses. We report that expression of the IFNγ receptor ß chain (IFNγR2) in CD8 T cells negatively correlates with clinical responsiveness to checkpoint blockade in metastatic melanoma patients, suggesting that the loss of sensitivity to IFNγ contributes to successful antitumor immunity. Indeed, specific deletion of IFNγR in CD8 T cells promotes tumor control in a mouse model of melanoma. Chronic IFNγ inhibits the maintenance, clonal diversity and proliferation of stem-like T cells. This leads to decreased generation of T cells with intermediate expression of exhaustion markers, previously associated with beneficial anti-tumor responses. This study provides evidence of a negative feedback loop whereby IFNγ depletes stem-like T cells to restrict anti-tumor immunity. Targeting this pathway might represent an alternative strategy to enhance T cell-based therapies.


Subject(s)
Melanoma , T-Lymphocytes, Cytotoxic , Mice , Animals , T-Lymphocytes, Cytotoxic/metabolism , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/drug therapy , Clone Cells/metabolism
8.
Nat Commun ; 13(1): 4073, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835762

ABSTRACT

Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans (n = 245). We find a significant subset of genes demonstrate expression quantitative trait loci specific to Natural Killer cells and these are highly informative of human disease, in particular autoimmunity. A Natural Killer cell transcriptome-wide association study across five common autoimmune diseases identifies further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor region, GNLY, MC1R and UVSSA. Our findings provide new insights into the unique biology of Natural Killer cells, demonstrating markedly different expression quantitative trait loci from other immune cells, with implications for disease mechanisms.


Subject(s)
Autoimmune Diseases , Transcriptome , Autoimmune Diseases/genetics , Autoimmunity/genetics , Carrier Proteins , Gene Expression Profiling , Genome-Wide Association Study , Humans , Killer Cells, Natural , Polymorphism, Single Nucleotide
9.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35133986

ABSTRACT

Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , HIV Infections/drug therapy , HIV Infections/genetics , HIV-1/genetics , Humans , Proviruses/genetics , Viral Load , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/therapeutic use
10.
Nat Med ; 28(12): 2592-2600, 2022 12.
Article in English | MEDLINE | ID: mdl-36526722

ABSTRACT

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Subject(s)
Interleukin-7 , Melanoma , Humans , Interleukin-7/genetics , Interleukin-7/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Melanoma/drug therapy , Melanoma/genetics , CD8-Positive T-Lymphocytes , Genetic Variation
11.
Sci Immunol ; 6(64): eabj8825, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597125

ABSTRACT

The antitumor action of immune checkpoint blockade (ICB) is primarily mediated by CD8+ T cells. How sensitivity to ICB varies across CD8+ T cell subsets and clonotypes and the relationship of these with clinical outcome is unclear. To explore this, we used single-cell V(D)J and RNA-sequencing to track gene expression changes elicited by ICB across individual peripheral CD8+ T cell clones, identify baseline markers of CD8+ T cell clonal sensitivity, and chart how CD8+ T cell transcriptional changes vary according to phenotypic subset and clonal size. We identified seven subsets of CD8+ T cells with divergent reactivity to ICB and found that the cytotoxic effector subset showed the greatest number of differentially expressed genes while remaining stable in clonal size after ICB. At the level of CD8+ T cell clonotypes, we found a relationship between transcriptional changes and clone size, with large clones showing a greater number of differentially regulated genes enriched for pathways including T cell receptor (TCR) signaling. Cytotoxic CD8+ effector clones were more likely to persist following ICB and were more likely to correspond with public tumor-infiltrating lymphocyte clonotypes. Last, we demonstrated that individuals whose CD8+ T cell pretreatment showed low cytotoxicity and had fewer expanded clones typically had worse outcomes after ICB treatment. This work further advances understanding of the molecular determinants of ICB response, assisting in the search for peripheral prognostic biomarkers and highlighting the importance of the baseline CD8+ immune landscape in determining ICB response in metastatic melanoma.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , Ipilimumab/pharmacology , Nivolumab/pharmacology , CD8-Positive T-Lymphocytes/immunology , Humans , Progression-Free Survival
12.
Curr Opin Immunol ; 65: 74-78, 2020 08.
Article in English | MEDLINE | ID: mdl-32634755

ABSTRACT

The immune system is paradigmatic for a complex arrangement of heterogenous cells performing distinct, frequently temporally and anatomically dissociated, functions. Immune dysfunction is a common characteristic across most diseases and human genetic approaches have revealed that many disease risk loci are associated with expression profiles and counts of specific immune subsets. Furthermore, genetic regulators of immune function may only demonstrate activity in specific disease-linked contexts. Here we explore steps taken to dissect the genetic determinants of variation in immune response across cell counts and function, and the insights these have provided into human immunity.


Subject(s)
Immune System/immunology , Immunity/immunology , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Immunity/genetics
13.
Front Immunol ; 10: 1088, 2019.
Article in English | MEDLINE | ID: mdl-31156637

ABSTRACT

Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.


Subject(s)
Dendritic Cells/classification , Dendritic Cells/immunology , HIV Infections/immunology , HIV Infections/virology , HIV/immunology , Host-Pathogen Interactions/immunology , Biological Ontologies , Biomarkers , Dendritic Cells/metabolism , HIV Infections/metabolism , Humans , Immunophenotyping , Organ Specificity , Phenotype
14.
Front Immunol ; 10: 2263, 2019.
Article in English | MEDLINE | ID: mdl-31616434

ABSTRACT

Mononuclear phagocytes are antigen presenting cells that play a key role in linking the innate and adaptive immune systems. In tissue, these consist of Langerhans cells, dendritic cells and macrophages, all of which express the key HIV entry receptors CD4 and CCR5 making them directly infectible with HIV. Mononuclear phagocytes are the first cells of the immune system to interact with invading pathogens such as HIV. Each cell type expresses a specific repertoire of pathogen binding receptors which triggers pathogen uptake and the release of innate immune cytokines. Langerhans cells and dendritic cells migrate to lymph nodes and present antigens to CD4 T cells, whereas macrophages remain tissue resident. Here we review how HIV-1 manipulates these cells by blocking their ability to produce innate immune cytokines and taking advantage of their antigen presenting cell function in order to gain transport to its primary target cells, CD4 T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Phagocytes/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Langerhans Cells/immunology , Langerhans Cells/metabolism , Langerhans Cells/virology , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Phagocytes/metabolism , Phagocytes/virology , Receptors, CCR5/immunology , Receptors, CCR5/metabolism
15.
Nat Commun ; 10(1): 2759, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227717

ABSTRACT

Langerhans cells (LC) are thought to be the only mononuclear phagocyte population in the epidermis where they detect pathogens. Here, we show that CD11c+ dendritic cells (DCs) are also present. These cells are transcriptionally similar to dermal cDC2 but are more efficient antigen-presenting cells. Compared to LCs, epidermal CD11c+ DCs are enriched in anogenital tissues where they preferentially interact with HIV, express the higher levels of HIV entry receptor CCR5, support the higher levels of HIV uptake and replication and are more efficient at transmitting the virus to CD4 T cells. Importantly, these findings are observed using both a lab-adapted and transmitted/founder strain of HIV. We also describe a CD33low cell population, which is transcriptionally similar to LCs but does not appear to function as antigen-presenting cells or acts as HIV target cells. Our findings reveal that epidermal DCs in anogenital tissues potentially play a key role in sexual transmission of HIV.


Subject(s)
Dendritic Cells/virology , Epidermal Cells/virology , HIV Infections/transmission , HIV-1/immunology , Antigen Presentation/immunology , CD11c Antigen/metabolism , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epidermal Cells/immunology , Epidermal Cells/metabolism , Epidermis/immunology , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/pathogenicity , Healthy Volunteers , Humans , Male , Primary Cell Culture , Receptors, CCR5/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , T-Lymphocytes/immunology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL