Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834877

ABSTRACT

Magnetic resonance imaging (MRI) is a non-invasive powerful modern clinical technique that is extensively used for the high-resolution imaging of soft tissues. To obtain high-definition pictures of tissues or of the whole organism this technique is enhanced by the use of contrast agents. Gadolinium-based contrast agents have an excellent safety profile. However, over the last two decades, some specific concerns have surfaced. Mn(II) has different favorable physicochemical characteristics and a good toxicity profile, which makes it a good alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Mn(II)-disubstituted symmetrical complexes containing dithiocarbamates ligands were prepared under a nitrogen atmosphere. The magnetic measurements on Mn complexes were carried out with MRI phantom measurements at 1.5 T with a clinical magnetic resonance. Relaxivity values, contrast, and stability were evaluated by appropriate sequences. Studies conducted to evaluate the properties of paramagnetic imaging in water using a clinical magnetic resonance showed that the contrast, produced by the complex [Mn(II)(L')2] × 2H2O (L' = 1.4-dioxa-8-azaspiro[4.5]decane-8-carbodithioate), is comparable to that produced by gadolinium complexes currently used in medicine as a paramagnetic contrast agent.


Subject(s)
Contrast Media , Manganese , Manganese/chemistry , Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
2.
EJNMMI Phys ; 10(1): 27, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37029829

ABSTRACT

PURPOSE: Monte Carlo (MC) simulation in Nuclear Medicine is a powerful tool for modeling many physical phenomena which are difficult to track or measure directly. MC simulation in SPECT/CT imaging is particularly suitable for optimizing the quantification of activity in a patient, and, consequently, the absorbed dose to each organ. To do so, validating MC results with real data acquired with gamma camera is mandatory. The aim of this study was the validation of the calibration factor (CF) and the recovery coefficient (RC) obtained with SIMIND Monte Carlo code for modeling a Siemens Symbia Intevo Excel SPECT-CT gamma camera to ensure optimal [Formula: see text]Tc and [Formula: see text]Lu SPECT quantification. METHODS: Phantom experiments using [Formula: see text]Tc and [Formula: see text]Lu have been performed to measure spatial resolution and sensitivity, as well as to evaluate the CF and RC from acquired data. The geometries used for 2D planar imaging were (1) Petri dish and (2) capillary source while for 3D volumetric imaging were (3) a uniform filled cylinder phantom and (4) a Jaszczack phantom with spheres of different volumes. The experimental results have been compared with the results obtained from Monte Carlo simulations performed in the same geometries. RESULTS: Comparison shows good accordance between simulated and experimental data. The measured planar spatial resolution was 8.3[Formula: see text] mm for [Formula: see text]Tc and 11.8±0.6 mm for [Formula: see text]Lu. The corresponding data obtained by SIMIND for [Formula: see text]Tc was 7.8±0.1 mm, while for [Formula: see text]Lu was 12.4±0.4 mm. The CF was 110.1±5.5 cps/MBq for Technetium and 18.3±1.0 cps/MBq for Lutetium. The corresponding CF obtained by SIMIND for [Formula: see text]Tc was 107.3±0.3 cps/MBq, while for [Formula: see text]Lu 20.4±0.7 cps/MBq. Moreover, a complete curve RCs vs Volume (ml) both for Technetium and Lutetium was determined to correct the PVE for all volumes of clinical interest. In none of the cases, a RC coefficient equal to 100 was found. CONCLUSIONS: The validation of quantification parameters shows that SIMIND can be used for simulating both gamma camera planar and SPECT images of Siemens Symbia Intevo using [Formula: see text]Tc and [Formula: see text]Lu radionuclides for different medical purposes and treatments.

3.
Pharmaceutics ; 14(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36297443

ABSTRACT

[18F]F-FDG (FDG) PET is emerging as a relevant diagnostic and prognostic tool in neuroendocrine neoplasms (NENs), as a simultaneous decrease in [68Ga]Ga-DOTA peptides and increase in FDG uptake (the "flip-flop" phenomenon) occurs during the natural history of these tumors. The aim of this study was to evaluate the variations on FDG PET in NEN patients treated with two different schemes of radioligand therapy (RLT) and to correlate them with clinical−pathologic variables. A prospective evaluation of 108 lesions in 56 patients (33 males and 23 females; median age, 64.5 years) affected by NENs of various primary origins (28 pancreatic, 13 gastrointestinal, 9 bronchial, 6 unknown primary (CUP-NENs) and 1 pheochromocytoma) and grades (median Ki-67 = 9%) was performed. The patients were treated with RLT within the phase II clinical trial FENET-2016 (CTID: NCT04790708). RLT was offered for 32 patients with the MONO scheme (five cycles of [177Lu]Lu-DOTATOC) and for 24 with the DUO scheme (three cycles of [177Lu]Lu-DOTATOC alternated with two cycles of [90Y]Y-DOTATOC). Variations in terms of the ΔSUVmax of a maximum of three target lesions per patient (58 for MONO and 50 for DUO RLT) were assessed between baseline and 3 months post-RLT FDG PET. In patients with negative baseline FDG PET, the three most relevant lesions on [68Ga]Ga-DOTA-peptide PET were assessed and matched on post-RLT FDG PET, to check for any possible changes in FDG avidity. Thirty-five patients (62.5%) had at least one pathological FDG uptake at the baseline scans, but the number was reduced to 29 (52%) after RLT. In the patients treated with DUO-scheme RLT, 20 out of 50 lesions were FDG positive before therapy, whereas only 14 were confirmed after RLT (p = 0.03). Moreover, none of the 30 FDG-negative lesions showed an increased FDG uptake after RLT. The lesions of patients with pancreatic and CUP-NENs treated with the DUO scheme demonstrated a significant reduction in ΔSUVmax in comparison to those treated with MONO RLT (p = 0.03 and p = 0.04, respectively). Moreover, we found a mild positive correlation between the grading and ΔSUVmax in patients treated with the MONO scheme (r = 0.39, p < 0.02), while no evidence was detected for patients treated with the DUO scheme. Our results suggest that RLT, mostly with the DUO scheme, could be effective in changing NEN lesions' glycometabolism, in particular, in patients affected by pancreatic and CUP-NENs, regardless of their Ki-67 index. Probably, associating [90Y]Y-labelled peptides, which have high energy emission and a crossfire effect, and [177Lu]Lu ones, characterized by a longer half-life and a safer profile for organs at risk, might represent a valid option in FDG-positive NENs addressed to RLT. Further studies are needed to validate our preliminary findings. In our opinion, FDG PET/CT should represent a potent tool for fully assessing a patient's disease characteristics, both before and after RLT.

4.
Pharmaceutics ; 13(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34575538

ABSTRACT

The PRRT (Peptide Receptor Radionuclide Therapy) is a promising modality treatment for patients with inoperable or metastatic neuroendocrine tumors (NETs). Progression-free survival (PFS) and overall survival (OS) of these patients are favorably comparable with standard therapies. The protagonist in this type of therapy is a somatostatin-modified peptide fragment ([Tyr3] octreotide), equipped with a specific chelating system (DOTA) capable of creating a stable bond with ß-emitting radionuclides, such as yttrium-90 and lutetium-177. In this review, covering twenty five years of literature, we describe the characteristics and performances of the two most used therapeutic radiopharmaceuticals for the NETs radio-treatment: [90Y]Y-DOTATOC and [177Lu]Lu-DOTATOC taking this opportunity to retrace the most significant results that have determined their success, promoting them from preclinical studies to application in humans.

5.
In Vivo ; 24(1): 97-100, 2010.
Article in English | MEDLINE | ID: mdl-20133983

ABSTRACT

Neuroendocrine tumours (NETs) may be fatal, though at a significantly slower pace than their exocrine counterparts. Nuclear medicine procedures for diagnosis and treatment of NETs are based on expression of somatostatin receptors. Radioguided surgery is a new method for diagnosing and treating many tumours and uses introperative gamma probes. The use and development of intraoperative gamma probes in the last 10 years has enabled the development of minimally invasive procedures in oncological surgery, with an improvement in both the survival rate and the quality of life. Systemic therapy with radiolabeled somatostatin analogues is a promising new tool in the management of patients with inoperable or metastatic NETs. In terms of tumour regression, the results obtained are encouraging.


Subject(s)
Antineoplastic Agents/therapeutic use , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/surgery , Radiopharmaceuticals/therapeutic use , Radiosurgery/methods , Somatostatin/therapeutic use , Humans , Minimally Invasive Surgical Procedures , Neuroendocrine Tumors/metabolism , Radiotherapy, Adjuvant , Receptors, Somatostatin/drug effects , Receptors, Somatostatin/metabolism , Somatostatin/analogs & derivatives , Treatment Outcome
6.
Med Phys ; 34(1): 119-26, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17278497

ABSTRACT

An integrated readout computed radiography system (Fuji XU-D1) incorporating dual-side imaging plates (ST-55BD) was analyzed in terms of modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for standard beam qualities RQA 9 and RQA 5. NPS and DQE were assessed using a detector entrance air kerma consistent with clinical practice for chest radiography. Similar investigation was performed on a standard reader (Fuji FCR 5000) using single-side imaging plates (ST-VI). Negligible differences were found between the MTFs of the two imaging systems for RQA 9, whereas for RQA 5 the single-side system exhibited slightly superior MTF. Regarding noise response, the dual-side system turned out to be better performing for both beam qualities over a wide range of frequencies. For RQA 9, at 8 microGy, the DQE of the dual-side system was moderately higher over the whole frequency range, whereas for RQA 5, at 10 microGy, significant improvement was found at low- and midrange frequencies. As an example, at 1 cycle/mm, the following improvements in the DQE of the dual-side system were observed: +22% (RQA 9, at 8 microGy), +50% (RQA 9, at 30 microGy), and +45% (RQA 5, at 10 microGy).


Subject(s)
Radiographic Image Enhancement/instrumentation , Radiography, Thoracic/instrumentation , Tomography, X-Ray Computed/instrumentation , X-Ray Intensifying Screens , Equipment Design , Equipment Failure Analysis , Humans , Radiographic Image Enhancement/methods , Radiography, Thoracic/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL