Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Publication year range
1.
Environ Monit Assess ; 194(9): 595, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35857115

ABSTRACT

Over the last 10 years, as a possible alternative to the conventional approach to air quality monitoring, real-time monitoring systems that use low-cost sensors and sensor platforms have been frequently applied. Generally, the long-term characteristics of low-cost PM sensors and monitoring have not been thoroughly documented except for a few widely used sensors and monitors. This article addresses the laboratory and field validation of three low-cost PM monitors of the same type that use the NOVA SDS011 PM sensor module over a 1-year period. In outdoor environments, we co-located low-cost PM monitors with GRIMM EDM180 monitors at the National Air Quality Monitoring stations. In indoor environments, we co-located them with a Turnkey Osiris PM monitor. Several performance aspects of the PM monitors were examined: operational data coverage, linearity of response, accuracy, precision, and inter-sensor variability. The obtained results show that inter-monitor R values were typically higher than 0.95 regardless of the environment. The tested monitors demonstrate high linearity in comparison with PM10 and PM2.5 concentrations measured in outdoor air with reference-equivalent instrumentation with R2 values ranging from 0.52 up to 0.83. In addition, very good agreement (R2 values ranging from 0.93 up to 0.97) with the gravimetric PM10 and PM2.5 method is obtained in the indoor environment (30 < RH < 70%). High RH (over 70%) negatively affected the PM monitors' response, especially in the case of PM10 concentrations (high overestimation).


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Laboratories , Particulate Matter/analysis
2.
Health Phys ; 125(3): 186-197, 2023 09 01.
Article in English, Sr | MEDLINE | ID: mdl-37352507

ABSTRACT

ABSTRACT: A need for detailed testing of individual monitoring systems used in accredited service at the Vinca Institute of Nuclear Sciences was recognized following changes in individual, workplace, and environmental monitoring passive dosimetry systems acceptability criteria stated in IEC 62387:2020 and changes related to reference fields used in radiation protection defined in ISO 4037:2019. Reliability and accuracy of dosimetry data acquired by passive dosimetry systems used for individual monitoring is assured by carrying out type tests. In this manner, the effects of different radiation influence quantities are examined. Passive dosimetry systems comprised of an LiF:Mg,Ti (TLD-100) detector card placed in two different holder models (8814 and 8850) and the Harshaw TLD Model 6600 Plus Automated Reader were tested. Type tests were done in an extended range of photon energies from 40 keV up to 1.25 MeV, angle of incidence values of ±45° and ± 60° for both vertical and horizontal dosimeter orientation, and in the dose range from 0.05 mSv to 1 Sv. Both dosimetry system configurations perform in line with IEC 62387:2020 within mandatory range for tested influence quantities. Dosimeters that use the 8850 holder type showed less pronounced energy and angular dependence of the response in the low-energy range.


Subject(s)
Radiation Protection , Thermoluminescent Dosimetry , Reproducibility of Results , Radiometry , Radiation Dosimeters
3.
Sci Total Environ ; 575: 639-648, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27678046

ABSTRACT

Recent developments in sensory and communication technologies have made the development of portable air-quality (AQ) micro-sensing units (MSUs) feasible. These MSUs allow AQ measurements in many new applications, such as ambulatory exposure analyses and citizen science. Typically, the performance of these devices is assessed using the mean error or correlation coefficients with respect to a laboratory equipment. However, these criteria do not represent how such sensors perform outside of laboratory conditions in large-scale field applications, and do not cover all aspects of possible differences in performance between the sensor-based and standardized equipment, or changes in performance over time. This paper presents a comprehensive Sensor Evaluation Toolbox (SET) for evaluating AQ MSUs by a range of criteria, to better assess their performance in varied applications and environments. Within the SET are included four new schemes for evaluating sensors' capability to: locate pollution sources; represent the pollution level on a coarse scale; capture the high temporal variability of the observed pollutant and their reliability. Each of the evaluation criteria allows for assessing sensors' performance in a different way, together constituting a holistic evaluation of the suitability and usability of the sensors in a wide range of applications. Application of the SET on measurements acquired by 25 MSUs deployed in eight cities across Europe showed that the suggested schemes facilitates a comprehensive cross platform analysis that can be used to determine and compare the sensors' performance. The SET was implemented in R and the code is available on the first author's website.

4.
Environ Pollut ; 206: 696-704, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342459

ABSTRACT

Respirable particulate matter present in outdoor and indoor environments is a health hazard. The particle concentrations can quickly change, with steep gradients on short temporal and spatial scales, and their chemical composition and physical properties vary considerably. Existing networks of aerosol particle measurements consist of limited number of monitoring stations, and mostly aim at assessment of compliance with air quality legislation regulating mass of particles of varying sizes. These networks can now be supplemented using small portable devices with low-cost sensors for assessment of particle mass that may provide higher temporal and spatial resolution if we understand the capabilities and characteristics of the data they provide. This paper overviews typical currently available devices and their characteristics. In addition it is presented original results of measurement and modelling in the aim of one low-cost PM monitor validation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Inhalation Exposure/analysis , Particulate Matter/analysis , Urbanization , Aerosols , Cost-Benefit Analysis , Environmental Monitoring/economics , Equipment Design , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL