Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Invertebr Pathol ; 200: 107975, 2023 09.
Article in English | MEDLINE | ID: mdl-37541571

ABSTRACT

The insect Galleria mellonella is an alternative animal model widely used for studying bacterial infections. It presents a wide range of advantages, including its low cost, easy maintenance and lack of ethical constraints. Among other features, their innate immune system is very similar to that of mammals. In this study, we dissected several larvae infected with important human pathogens: Mycobacterium abscessus, Staphylococcus aureus and Pseudomonas aeruginosa. By observing the fat body, gut, trachea, and hemolymph under the microscope, we were able to describe where bacteria tend to disseminate. We also quantified the number of bacteria in the hemolymph throughout the infection course and found significant differences between the different pathogens. With this work, we aimed to better understand the behavior and dissemination of bacteria in the infected larvae.


Subject(s)
Moths , Staphylococcal Infections , Humans , Animals , Larva/microbiology , Moths/microbiology , Insecta , Hemolymph/microbiology , Mammals
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362269

ABSTRACT

Galleria mellonella is an alternative animal model of infection. The use of this species presents a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover, its use is considered to be more ethically acceptable than other models, it is conveniently sized for manipulation, and its immune system has multiple similarities with mammalian immune systems. Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles. All of these reasons make this insect a promising animal model. However, cultivating G. mellonella hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles and the interactions of particles and materials in an in vitro environment.


Subject(s)
Hemocytes , Moths , Animals , Insecta , Disease Models, Animal , Larva , Mammals
3.
FASEB J ; 34(2): 2912-2928, 2020 02.
Article in English | MEDLINE | ID: mdl-31908067

ABSTRACT

Many notable human pathogens are facultative anaerobes. These pathogens exhibit redundant metabolic pathways and a whole array of regulatory systems to adapt to changing oxygen levels. However, our knowledge of facultative anaerobic pathogens is mostly based on fully aerobic or anaerobic cultures, which does not reflect real infection conditions, while the microaerobic range remains understudied. Here, we examine the behavior of pathogenic and nonpathogenic strains of two facultative anaerobes, Escherichia coli and Pseudomonas aeruginosa, during the aerobic-anaerobic transition. To do so, we introduce a new technique named AnaeroTrans, in which we allow self-consumption of oxygen by steady-state cultures and monitor the system by measuring the gas-phase oxygen concentration. We explore the different behavior of the studied species toward oxygen and examine how this behavior is associated with the targeted infection sites. As a model, we characterize the adaptation profile of the ribonucleotide reductase network, a complex oxygen-dependent enzymatic system responsible for the generation of the deoxyribonucleotides. We also explore the actions of the most important anaerobic regulators and how these regulators influence bacterial fitness. Our results allow us to classify the different elements that compose the aerobic-anaerobic transition into reproducible stages, thus showing the different adaptation mechanisms of the studied species.


Subject(s)
Adaptation, Physiological , Escherichia coli/growth & development , Oxygen/metabolism , Aerobiosis , Escherichia coli Proteins/metabolism , Pseudomonas aeruginosa
4.
J Nanobiotechnology ; 17(1): 21, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30709404

ABSTRACT

BACKGROUND: Emerging concepts for designing innovative drugs (i.e., novel generations of antimicrobials) frequently include nanostructures, new materials, and nanoparticles (NPs). Along with numerous advantages, NPs bring limitations, partly because they can limit the analytical techniques used for their biological and in vivo validation. From that standpoint, designing innovative drug delivery systems requires advancements in the methods used for their testing and investigations. Considering the well-known ability of resazurin-based methods for rapid detection of bacterial metabolisms with very high sensitivity, in this work we report a novel optimization for tracking bacterial growth kinetics in the presence of NPs with specific characteristics, such as specific optical properties. RESULTS: Arginine-functionalized gold composite (HAp/Au/arginine) NPs, used as the NP model for validation of the method, possess plasmonic properties and are characterized by intensive absorption in the UV/vis region with a surface plasmon resonance maximum at 540 nm. Due to the specific optical properties, the NP absorption intensively interferes with the light absorption measured during the evaluation of bacterial growth (optical density; OD600). The results confirm substantial nonspecific interference by NPs in the signal detected during a regular turbidity study used for tracking bacterial growth. Instead, during application of a resazurin-based method (Presto Blue), when a combination of absorption and fluorescence detection is applied, a substantial increase in the signal-to-noise ratio is obtained that leads to the improvement of the accuracy of the measurements as verified in three bacterial strains tested with different growth rates (E. coli, P. aeruginosa, and S. aureus). CONCLUSIONS: Here, we described a novel procedure that enables the kinetics of bacterial growth in the presence of NPs to be followed with high time resolution, high sensitivity, and without sampling during the kinetic study. We showed the applicability of the Presto Blue method for the case of HAp/Au/arginine NPs, which can be extended to various types of metallic NPs with similar characteristics. The method is a very easy, economical, and reliable option for testing NPs designed as novel antimicrobials.


Subject(s)
Bacteria/growth & development , Biosensing Techniques/methods , Nanostructures/chemistry , Bacteria/drug effects , Biosensing Techniques/instrumentation , Biosensing Techniques/standards , Gold/chemistry , Gold/toxicity , Indicators and Reagents , Kinetics , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanomedicine , Nanostructures/toxicity , Oxazines , Signal-To-Noise Ratio , Surface Plasmon Resonance , Xanthenes
5.
Article in English | MEDLINE | ID: mdl-29158277

ABSTRACT

Long-term catheter-related bloodstream infections (CRBSIs) involving coagulase-negative staphylococci are associated with poor patient outcomes, increased hospitalization, and high treatment costs. The use of vancomycin lock therapy has been an important step forward in treatment of these biofilms, although failures occur in 20% of patients. In this study, we report that a high dose of daptomycin lock therapy may offer a therapeutic advantage for these CRBSIs in just 24 h of treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Catheter-Related Infections/drug therapy , Daptomycin/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects , Animals , Bacteremia/drug therapy , Bacteremia/microbiology , Biofilms/drug effects , Catheter-Related Infections/microbiology , Rabbits , Staphylococcal Infections/microbiology , Vancomycin/pharmacology
6.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400165

ABSTRACT

Concerns have been raised about the long-term accumulating effects of triclocarban, a polychlorinated diarylurea widely used as an antibacterial soap additive, in the environment and in human beings. Indeed, the Food and Drug Administration has recently banned it from personal care products. Herein, we report the synthesis, antibacterial activity and cytotoxicity of novel N,N'-diarylureas as triclocarban analogs, designed by reducing one or more chlorine atoms of the former and/or replacing them by the novel pentafluorosulfanyl group, a new bioisostere of the trifluoromethyl group, with growing importance in drug discovery. Interestingly, some of these pentafluorosulfanyl-bearing ureas exhibited high potency, broad spectrum of antimicrobial activity against Gram-positive bacterial pathogens, and high selectivity index, while displaying a lower spontaneous mutation frequency than triclocarban. Some lines of evidence suggest a bactericidal mode of action for this family of compounds.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Carbanilides/chemistry , Carbanilides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Catheters/microbiology , Humans , Microbial Sensitivity Tests , Molecular Structure , Mutation Rate , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Structure-Activity Relationship
7.
J Antimicrob Chemother ; 71(10): 2895-901, 2016 10.
Article in English | MEDLINE | ID: mdl-27378814

ABSTRACT

OBJECTIVES: The effectiveness of anidulafungin versus liposomal amphotericin B (LAmB) for treating experimental Candida parapsilosis catheter-related infection by an antifungal-lock technique was assessed. METHODS: Two clinical strains of C. parapsilosis (CP12 and CP54) were studied. In vitro studies were used to determine the biofilm MICs (MBIC50 and MBIC90) by XTT reduction assay and LIVE/DEAD biofilm viability for anidulafungin and LAmB on 96-well microtitre polystyrene plates and silicone discs. An intravenous catheter was implanted in New Zealand white rabbits. Infection was induced by locking the catheter for 48 h with the inoculum. The 48 h antifungal-lock treatment groups included control, 3.3 mg/mL anidulafungin and 5.5 mg/mL LAmB. RESULTS: Anidulafungin showed better in vitro activity than LAmB against C. parapsilosis growing in biofilm on silicone discs. MBIC90 of LAmB: CP12, >1024 mg/L; CP54, >1024 mg/L. MBIC90 of anidulafungin: CP12, 1 mg/L; CP54, 1 mg/L (P ≤ 0.05). Moreover, only anidulafungin (1 mg/L) showed >90% non-viable cells in the LIVE/DEAD biofilm viability assay on silicone discs. No differences were observed between the in vitro susceptibility of anidulafungin or LAmB when 96-well plates were used. Anidulafungin achieved significant reductions relative to LAmB in log10 cfu recovered from the catheter tips for both strains (P ≤ 0.05). Only anidulafungin achieved negative catheter tip cultures (CP12 63%, CP54 73%, P ≤ 0.05). CONCLUSIONS: Silicone discs may be a more reliable substrate for the study of in vitro biofilm susceptibility of C. parapsilosis. Anidulafungin-lock therapy showed the highest activity for experimental catheter-related infection with C. parapsilosis.


Subject(s)
Antifungal Agents/therapeutic use , Biofilms/drug effects , Candida/drug effects , Candidiasis/drug therapy , Catheter-Related Infections/drug therapy , Catheter-Related Infections/microbiology , Echinocandins/therapeutic use , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Anidulafungin , Animals , Antifungal Agents/pharmacology , Biofilms/growth & development , Candida/isolation & purification , Candidiasis/microbiology , Catheters, Indwelling/microbiology , Echinocandins/pharmacology , Male , Microbial Sensitivity Tests , Rabbits , Silicones
8.
J Urol ; 195(1): 198-205, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26165584

ABSTRACT

PURPOSE: γ Irradiated Mycobacterium bovis bacillus Calmette-Guérin has shown in vitro and ex vivo antitumor activity. However, to our knowledge the potential antitumor capacity has not been demonstrated in vivo. We studied the in vivo potential of γ irradiated bacillus Calmette-Guérin and γ irradiated M. brumae, a saprophytic mycobacterium that was recently described as an immunotherapeutic agent. MATERIALS AND METHODS: The antitumor capacity of γ irradiated M. brumae was first investigated by analyzing the in vitro inhibition of bladder tumor cell proliferation and the ex vivo cytotoxic effect of M. brumae activated peripheral blood cells. The effect of γ irradiated M. brumae or bacillus Calmette-Guérin intravesical treatment was then compared to treatment with live mycobacteria in the orthotopic murine model of bladder cancer. RESULTS: Nonviable M. brumae showed a capacity to inhibit in vitro bladder cancer cell lines similar to that of live mycobacteria. However, its capacity to induce cytokine production was decreased compared to that of live M. brumae. γ Irradiated M. brumae could activate immune cells to inhibit tumor cell growth, although to a lesser extent than live mycobacteria. Finally, intravesical treatment with γ irradiated M. brumae or bacillus Calmette-Guérin significantly increased survival with respect to that of nontreated tumor bearing mice. Both γ irradiated mycobacteria showed lower survival rates than those of live mycobacteria but the minor efficacy of γ irradiated vs live mycobacteria was only significant for bacillus Calmette-Guérin. CONCLUSIONS: Our results show that although γ irradiated mycobacteria is less efficacious than live mycobacteria, it induces an antitumor effect in vivo, avoiding the possibility of further mycobacterial infections.


Subject(s)
Adjuvants, Immunologic/therapeutic use , BCG Vaccine/therapeutic use , Gamma Rays , Mycobacterium bovis/radiation effects , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/mortality , Animals , Female , Mice , Mice, Inbred C57BL , Survival Rate
9.
Infect Immun ; 83(4): 1305-17, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25605769

ABSTRACT

A critical step in the life cycle of all organisms is the duplication of the genetic material during cell division. Ribonucleotide reductases (RNRs) are essential enzymes for this step because they control the de novo production of the deoxyribonucleotides required for DNA synthesis and repair. Enterobacteriaceae have three functional classes of RNRs (Ia, Ib, and III), which are transcribed from separate operons and encoded by the genes nrdAB, nrdHIEF, and nrdDG, respectively. Here, we investigated the role of RNRs in the virulence of adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease (CD) patients. Interestingly, the LF82 strain of AIEC harbors four different RNRs (two class Ia, one class Ib, and one class III). Although the E. coli RNR enzymes have been extensively characterized both biochemically and enzymatically, little is known about their roles during bacterial infection. We found that RNR expression was modified in AIEC LF82 bacteria during cell infection, suggesting that RNRs play an important role in AIEC virulence. Knockout of the nrdR and nrdD genes, which encode a transcriptional regulator of RNRs and class III anaerobic RNR, respectively, decreased AIEC LF82's ability to colonize the gut mucosa of transgenic mice that express human CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6). Microarray experiments demonstrated that NrdR plays an indirect role in AIEC virulence by interfering with bacterial motility and chemotaxis. Thus, the development of drugs targeting RNR classes, in particular NrdR and NrdD, could be a promising new strategy to control gut colonization by AIEC bacteria in CD patients.


Subject(s)
Antigens, CD/biosynthesis , Bacterial Adhesion/genetics , Cell Adhesion Molecules/biosynthesis , Chemotaxis/genetics , Escherichia coli Proteins/genetics , Escherichia coli/pathogenicity , Animals , Antigens, CD/genetics , Cell Adhesion Molecules/genetics , Crohn Disease/microbiology , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli Infections/genetics , Escherichia coli Infections/pathology , Escherichia coli Proteins/biosynthesis , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Intestinal Mucosa/microbiology , Male , Mice , Mice, Transgenic , Microarray Analysis , Promoter Regions, Genetic , Ribonucleotide Reductases/genetics , Virulence Factors/biosynthesis , Virulence Factors/genetics
10.
Electrophoresis ; 36(13): 1471-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25808673

ABSTRACT

Dielectrophoretic (DEP) manipulation of cells present in real samples is challenging. We show in this work that an interdigitated DEP chip can be used to trap and wash a population of the food-spoiling yeast Zygosaccharomyces rouxii that contaminates a sample of apple juice. By previously calibrating the chip, the yeast population loaded is efficiently trapped, washed, and recovered in a small-volume fraction that, in turn, can be used for efficient PCR detection of this yeast. DEP washing of yeast cells gets rid of PCR inhibitors present in apple juice and facilitates PCR analysis. This and previous works on the use of DEP chips to improve PCR analysis show that a potential use of DEP is to be used as a treatment of real samples prior to PCR.


Subject(s)
Beverages/microbiology , Electrophoresis/instrumentation , Malus , Polymerase Chain Reaction/instrumentation , Zygosaccharomyces/isolation & purification , Electrophoresis/methods , Polymerase Chain Reaction/methods , Zygosaccharomyces/chemistry
11.
Bioorg Med Chem ; 23(2): 290-6, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25515953

ABSTRACT

Staphylococcus aureus, especially strains resistant to multiple antibiotics, is a major pathogen for humans and animals. In this paper we have synthesized and evaluated the antibacterial activity of a new series of benzopolycyclic amines. Some of them exhibited µM MIC values against Staphylococcus aureus and other bacteria, including methicillin-resistant S. aureus MRSA. Compound 8 that displayed a good selectivity index, showed to be active in eliminating bacterial cells forming a preexisting biofilm.


Subject(s)
Amines/chemistry , Anti-Bacterial Agents/chemistry , Amines/chemical synthesis , Amines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
12.
J Fungi (Basel) ; 10(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535217

ABSTRACT

Viability and vitality assays play a crucial role in assessing the effectiveness of novel therapeutic approaches, with stain-based methods providing speed and objectivity. However, their application in yeast research lacks consensus. This study aimed to assess the performance of four common dyes on C. parapsilosis planktonic cells as well as sessile cells that form well-structured biofilms (treated and not treated with amphotericin B). Viability assessment employed Syto-9 (S9), thiazole orange (TO), and propidium iodide (PI). Metabolic activity was determined using fluorescein diacetate (FDA) and FUN-1. Calcofluor white (CW) served as the cell visualization control. Viability/vitality percentage of treated samples were calculated for each dye from confocal images and compared to crystal violet and PrestoBlue results. Heterogeneity in fluorescence intensity and permeability issues were observed with S9, TO, and FDA in planktonic cells and biofilms. This variability, influenced by cell morphology, resulted in dye-dependent viability/vitality percentages. Notably, PI and FUN-1 exhibited robust C. parapsilosis staining, with FUN-1 vitality results comparable to PrestoBlue. Our finding emphasizes the importance of evaluating dye permeability in yeast species beforehand, incorporating cell visualization controls. An improper dye selection may lead to misinterpreting treatment efficacy.

13.
Article in English | MEDLINE | ID: mdl-38403876

ABSTRACT

Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Subject(s)
Anti-Infective Agents , Nanomedicine , Biofilms , Anti-Bacterial Agents/therapeutic use , Polymers
14.
mSystems ; : e0070424, 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39470247

ABSTRACT

Histones possess significant antimicrobial potential, yet their activity against biofilms remains underexplored. Moreover, concerns regarding adverse effects limit their clinical implementation. We investigated the antibacterial efficacy of human recombinant histone H1 subtypes against Pseudomonas aeruginosa PAO1, both planktonic and in biofilms. After the in vitro tests, toxicity and efficacy were assessed in a P. aeruginosa PAO1 infection model using Galleria mellonella larvae. Histones were also evaluated in combination with ciprofloxacin (Cpx) and gentamicin (Gm). Our results demonstrate antimicrobial activity of all three histones against P. aeruginosa PAO1, with H1.0 and H1.4 showing efficacy at lower concentrations. The bactericidal effect was associated with a mechanism of membrane disruption. In vitro studies using static and dynamic models showed that H1.4 had antibiofilm potential by reducing cell biomass. Neither H1.0 nor H1.4 showed toxicity in G. mellonella larvae, and both increased larvae survival when infected with P. aeruginosa PAO1. Although in vitro synergism was observed between ciprofloxacin and H1.0, no improvement over the antibiotic alone was noted in vivo. Differences in antibacterial and antibiofilm activity were attributed to sequence and structural variations among histone subtypes. Moreover, the efficacy of H1.0 and H1.4 was influenced by the presence and strength of the extracellular matrix. These findings suggest histones hold promise for combating acute and chronic infections caused by pathogens such as P. aeruginosa.IMPORTANCEThe constant increase of multidrug-resistant bacteria is a critical global concern. The inefficacy of current therapies to treat bacterial infections is attributed to multiple mechanisms of resistance, including the capacity to form biofilms. Therefore, the identification of novel and safe therapeutic strategies is imperative. This study confirms the antimicrobial potential of three histone H1 subtypes against both Gram-negative and Gram-positive bacteria. Furthermore, histones H1.0 and H1.4 demonstrated in vivo efficacy without associated toxicity in an acute infection model of Pseudomonas aeruginosa PAO1 in Galleria mellonella larvae. The bactericidal effect of these proteins also resulted in biomass reduction of P. aeruginosa PAO1 biofilms. Given the clinical significance of this opportunistic pathogen, our research provides a comprehensive initial evaluation of the efficacy, toxicity, and mechanism of action of a potential new therapeutic approach against acute and chronic bacterial infections.

15.
Biofilm ; 7: 100178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317668

ABSTRACT

Biofilm formation by the pathobiont Haemophilus influenzae is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). ß-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies. Moreover, unlike the standard minimal inhibitory concentration assay used to assess antibacterial activity against planktonic cells, standardization of methods to evaluate anti-biofilm drug activity is limited. In this work, we detail a panel of protocols for systematic analysis of drug antimicrobial effect on bacterial biofilms, customized to evaluate drug effects against H. influenzae biofilms. Testing of two cinnamaldehyde analogs, (E)-trans-2-nonenal and (E)-3-decen-2-one, demonstrated their effectiveness in both H. influenzae inhibition of biofilm formation and eradication or preformed biofilms. Assay complementarity allowed quantifying the dynamics and extent of the inhibitory effects, also observed for ampicillin resistant clinical strains forming biofilms refractory to this antibiotic. Moreover, cinnamaldehyde analog encapsulation into poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles allowed drug vehiculization while maintaining efficacy. Overall, we demonstrate the usefulness of cinnamaldehyde analogs against H. influenzae biofilms, present a test panel that can be easily adapted to a wide range of pathogens and drugs, and highlight the benefits of drug nanoencapsulation towards safe controlled release.

16.
J Bacteriol ; 195(18): 4255-63, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23873909

ABSTRACT

Ribonucleotide reductases (RNRs) are essential enzymes for DNA synthesis because they are responsible for the production of the four deoxyribonucleotides (dNTPs) from their corresponding ribonucleotides. Escherichia coli contains two classes of aerobic RNRs, encoded by the nrdAB (class Ia) and nrdHIEF (class Ib) operons, and a third RNR class, which is functional under anaerobic conditions and is encoded by the nrdDG (class III) operon. Because cellular imbalances in the amounts of the four dNTPs cause an increase in the rate of mutagenesis, the activity and the expression of RNRs must be tightly regulated during bacterial chromosome replication. The transcriptional regulation of these genes requires several transcription factors (including DnaA, IciA, FIS [factor for inversion stimulation], Fnr, Fur, and NrdR), depending on the RNR class; however, the factors that dictate the expression of some RNR genes in response to different environmental conditions are not known. We show that H-NS modulates the expression of the nrdAB and nrdDG operons. H-NS represses expression both in aerobically and in anaerobically growing cells. Under aerobic conditions, repression occurs at the exponential phase of growth as well as at the transition from the exponential to the stationary phase, a period when no dNTPs are needed. Under anoxic conditions, repression occurs mainly in exponentially growing cells. Electrophoretic mobility assays performed with two DNA fragments from the regulatory region of the nrdAB operon demonstrated the direct interaction of H-NS with these sequences.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Ribonucleotide Reductases/genetics , Aerobiosis , Anaerobiosis , Electrophoretic Mobility Shift Assay , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/metabolism , Fimbriae Proteins/genetics , Operon/genetics , Operon/physiology , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Ribonucleotide Reductases/biosynthesis , Ribonucleotide Reductases/metabolism
17.
Biotechniques ; 75(6): 250-255, 2023 12.
Article in English | MEDLINE | ID: mdl-37880975

ABSTRACT

Fluorescent proteins, such as green fluorescent proteins, are invaluable tools for detecting and quantifying gene expression in high-throughput reporter gene assays. However, they introduce significant inaccuracies in studies involving microaerobiosis or anaerobiosis, as oxygen is required for the maturation of these proteins' chromophores. In this study, the authors highlight the errors incurred by using fluorescent proteins under limited oxygenation by comparing standard fluorescence-based reporter gene assays to quantitative real-time PCR data in the study of a complex oxygen-regulated gene network. Furthermore, a solution to perform quantification of anaerobic and microaerobic gene expression with fluorescent reporter proteins using a microplate reader with an oxygen control system and applying pulses of full oxygenation before fluorescence measurements is provided.


Subject(s)
Oxygen , Anaerobiosis , Genes, Reporter/genetics , Green Fluorescent Proteins/analysis , Indicators and Reagents , Gene Expression , Oxygen/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
18.
N Biotechnol ; 76: 41-48, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37080534

ABSTRACT

ReViTA (Reverse in VitroTranscription Assay) is a novel in vitro transcription-based method to study gene expression under the regulation of specific transcription factors. The ReViTA system uses a plasmid with a control sequence, the promoter region of the studied gene, the transcription factor of interest, and an RNA polymerase saturated with σ70. The main objective of this study was to evaluate the method; thus, as a proof of concept, two different transcription factors were used, a transcriptional inducer, AlgR, and a repressor, LexA, from Pseudomonas aeruginosa. After the promoters were incubated with the transcription factors, the plasmid was transcribed into RNA and reverse transcribed to cDNA. Gene expression was measured using qRTPCR. Using the ReViTA plasmid, transcription induction of 55% was observed when AlgR protein was added and a 27% transcription reduction with the repressor LexA, compared with the samples without transcription factors. The results demonstrated the correct functioning of ReViTA as a novel method to study transcription factors and gene expression. Thus, ReViTA could be a rapid and accessible in vitro method to evaluate genes and regulators of various species.


Subject(s)
Bacterial Proteins , Transcription Factors , Base Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Plasmids
19.
mSystems ; 8(2): e0100522, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36794960

ABSTRACT

Ribonucleotide reductases (RNRs) are key enzymes which catalyze the synthesis of deoxyribonucleotides, the monomers needed for DNA replication and repair. RNRs are classified into three classes (I, II, and III) depending on their overall structure and metal cofactors. Pseudomonas aeruginosa is an opportunistic pathogen which harbors all three RNR classes, increasing its metabolic versatility. During an infection, P. aeruginosa can form a biofilm to be protected from host immune defenses, such as the production of reactive oxygen species by macrophages. One of the essential transcription factors needed to regulate biofilm growth and other important metabolic pathways is AlgR. AlgR is part of a two-component system with FimS, a kinase that catalyzes its phosphorylation in response to external signals. Additionally, AlgR is part of the regulatory network of cell RNR regulation. In this study, we investigated the regulation of RNRs through AlgR under oxidative stress conditions. We determined that the nonphosphorylated form of AlgR is responsible for class I and II RNR induction after an H2O2 addition in planktonic culture and during flow biofilm growth. We observed similar RNR induction patterns upon comparing the P. aeruginosa laboratory strain PAO1 with different P. aeruginosa clinical isolates. Finally, we showed that during Galleria mellonella infection, when oxidative stress is high, AlgR is crucial for transcriptional induction of a class II RNR gene (nrdJ). Therefore, we show that the nonphosphorylated form of AlgR, in addition to being crucial for infection chronicity, regulates the RNR network in response to oxidative stress during infection and biofilm formation. IMPORTANCE The emergence of multidrug-resistant bacteria is a serious problem worldwide. Pseudomonas aeruginosa is a pathogen that causes severe infections because it can form a biofilm that protects it from immune system mechanisms such as the production of oxidative stress. Ribonucleotide reductases are essential enzymes which synthesize deoxyribonucleotides used in the replication of DNA. RNRs are classified into three classes (I, II, and III), and P. aeruginosa harbors all three of these classes, increasing its metabolic versatility. Transcription factors, such as AlgR, regulate the expression of RNRs. AlgR is involved in the RNR regulation network and regulates biofilm growth and other metabolic pathways. We determined that AlgR induces class I and II RNRs after an H2O2 addition in planktonic culture and biofilm growth. Additionally, we showed that a class II RNR is essential during Galleria mellonella infection and that AlgR regulates its induction. Class II RNRs could be considered excellent antibacterial targets to be explored to combat P. aeruginosa infections.


Subject(s)
Hydrogen Peroxide , Pseudomonas aeruginosa , Hydrogen Peroxide/pharmacology , Oxidative Stress , Reactive Oxygen Species , Deoxyribonucleotides
20.
Microorganisms ; 11(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764089

ABSTRACT

Pathogenic bacteria form biofilms during infection, and polymicrobial biofilms are the most frequent manifestation. Biofilm attachment, maturation, and/or antibiotic sensitivity are mainly evaluated with microtiter plate assays, in which bacteria are stained to enable the quantification of the biomass by optical absorbance or fluorescence emission. However, using these methods to distinguish different species in dual-species or polymicrobial biofilms is currently impossible. Colony-forming unit counts from homogenized dual-species biofilms on selective agar medium allow species differentiation but are time-consuming for a high-throughput screening. Thus, reliable, feasible, and fast methods are urgently needed to study the behavior of polymicrobial and dual-species communities. This study shows that Pseudomonas aeruginosa and Burkholderia cenocepacia strains expressing specific fluorescent or bioluminescent proteins permit the more efficient study of dual-species biofilms compared to other methods that rely on measuring the total biomass. Combining fluorescence and bioluminescence measurements allows an independent analysis of the different microbial species within the biofilm, indicating the degree of presence of each one over time during a dual-species biofilm growth. The quantitative strategies developed in this work are reproducible and recommended for dual-species biofilm studies with high-throughput microtiter plate approaches using strains that can constitutively express fluorescent or bioluminescent proteins.

SELECTION OF CITATIONS
SEARCH DETAIL