Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Mol Sci ; 24(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445773

ABSTRACT

The design and engineering of antibacterial materials are key for preventing bacterial adherence and proliferation in biomedical and household instruments. Silver nanoparticles (AgNPs) and chitosan (CHI) are broad-spectrum antibacterial materials with different properties whose combined application is currently under optimization. This study proposes the formation of antibacterial films with AgNPs embedded in carboxymethylcellulose/chitosan multilayers by the layer-by-layer (LbL) method. The films were deposited onto nanoporous silicon (nPSi), an ideal platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. We focused on two alternative multilayer deposition processes: cyclic dip coating (CDC) and cyclic spin coating (CSC). The physicochemical properties of the films were the subject of microscopic, microstructural, and surface-interface analyses. The antibacterial activity of each film was investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria strains as model microorganisms. According to the findings, the CDC technique produced multilayer films with higher antibacterial activity for both bacteria compared to the CSC method. Bacteria adhesion inhibition was observed from only three cycles. The developed AgNPs-multilayer composite film offers advantageous antibacterial properties for biomedical applications.


Subject(s)
Chitosan , Metal Nanoparticles , Nanopores , Chitosan/chemistry , Silver/chemistry , Carboxymethylcellulose Sodium , Silicon , Layer-by-Layer Nanoparticles , Bacterial Adhesion , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Nanotechnology ; 31(36): 365704, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32460262

ABSTRACT

Composites of nanostructured porous silicon and silver (nPSi-Ag) have attracted great attention due to the wide spectrum of applications in fields such as microelectronics, photonics, photocatalysis and bioengineering, Among the different methods for the fabrication of nanostructured composite materials, dip and spin-coating are simple, versatile, and cost-effective bottom-up technologies to provide functional coatings. In that sense, we aimed at fabricating nPSi-Ag composite layers. Using nPSi layers with pore diameter of 30 nm, two types of thin-film techniques were systematically compared: cyclic dip-coating (CDC) and cyclic spin-coating (CSC). CDC technique formed a mix of granular and flake-like structures of metallic Ag, and CSC method favored the synthesis of flake-like structures with Ag and Ag2O phases. Flakes obtained by CDC and CSC presented a width of 110 nm and 70 nm, respectively. Particles also showed a nanostructure surface with features around 25 nm. According to the results of EDX and RBS, integration of Ag into nPSi was better achieved using the CDC technique. SERS peaks related to chitosan adsorbed on Ag nanostructures were enhanced, especially in the nPSi-Ag composite layers fabricated by CSC compared to CDC, which was confirmed by FTDT simulations. These results show that CDC and CSC produce different nPSi-Ag composite layers for potential applications in bioengineering and photonics.

3.
Inorg Chem ; 57(16): 10090-10099, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30066565

ABSTRACT

Bi2Te3 is a well-studied material because of its thermoelectric properties and, recently, has also been studied as a topological insulator. However, it is only one of several compounds in the Bi-Te system. This work presents a study of the physical vapor transport growth of Bi-Te material focused on determining the growth conditions required to selectively obtain a desired phase of the Bi-Te system, i.e., Bi2Te3, BiTe, and Bi4Te3. Epitaxial films of these compounds were prepared on sapphire and silicon substrates. The results were verified by X-ray diffraction, Raman spectroscopy, and Rutherford backscattering spectrometry.

4.
Langmuir ; 28(3): 1909-13, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22149025

ABSTRACT

In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material.

5.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683676

ABSTRACT

As microelectronic technology approaches the limit of what can be achieved in terms of speed and integration level, there is an increasing interest in moving from electronics to photonics, where photons and light beams replace electrons and electrical currents, which will result in higher processing speeds and lower power consumption [...].

6.
Opt Express ; 19(14): 13291-305, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21747484

ABSTRACT

Different designs for producing multiple stopband mesoporous silicon rugate filters via electrochemical anodization are compared. The effects of light absorption and dispersion to visible range filter design are investigated. Thermal oxidation is applied for passivating the chemically reactive porous silicon surface, and the response of the passivated structures to ethanol vapor is examined. Differences in gas sensing properties for the various designs are evaluated and possible reasons for the observed differences are discussed. Methods for sidelobe suppression in multipeak filters are discussed and demonstrated, and their effects in gas sensing applications are estimated.


Subject(s)
Ethanol/analysis , Filtration/instrumentation , Gases/analysis , Photometry/instrumentation , Silicon/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Porosity
7.
Opt Express ; 17(7): 5446-56, 2009 Mar 30.
Article in English | MEDLINE | ID: mdl-19333311

ABSTRACT

In the present work, porous silicon (PS) based Bragg reflectors are fabricated, and the reactive PS surface is passivated by means of thermal carbonization (TC) by acetylene decomposition. The gas sensing properties of the reflectors are studied with different gas compositions and concentrations. Based on the results it can be concluded that thermally carbonized Bragg reflectors provide an easy and inexpensive means to produce chemically stable high quality PS reflectors with good gas sensing properties, which differ from those of unpassivated PS reflectors.


Subject(s)
Biosensing Techniques/instrumentation , Carbon/chemistry , Gases/analysis , Optical Devices , Refractometry/instrumentation , Silicon/chemistry , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Hydrocarbons/chemistry , Porosity , Reproducibility of Results , Sensitivity and Specificity , Temperature
8.
Sensors (Basel) ; 9(7): 5149-72, 2009.
Article in English | MEDLINE | ID: mdl-22346691

ABSTRACT

The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

9.
Nanomaterials (Basel) ; 9(7)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315233

ABSTRACT

Photonic and plasmonic systems have been intensively studied as an effective means to modify and enhance the electromagnetic field. In recent years hybrid plasmonic-photonic systems have been investigated as a promising solution for enhancing light-matter interaction. In the present work we present a hybrid structure obtained by growing a plasmonic 2D nanograting on top of a porous silicon distributed Bragg reflector. Particular attention has been devoted to the morphological characterization of these systems. Electron microscopy images allowed us to determine the geometrical parameters of the structure. The matching of the optical response of both components has been studied. Results indicate an interaction between the plasmonic and the photonic parts of the system, which results in a localization of the electric field profile.

10.
Materials (Basel) ; 12(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609796

ABSTRACT

Porous silicon (PSi) is a versatile matrix with tailorable surface reactivity, which allows the processing of a range of multifunctional films and particles. The biomedical applications of PSi often require a surface capping with organic functionalities. This work shows that visible light can be used to catalyze the assembly of organosilanes on the PSi, as demonstrated with two organosilanes: aminopropyl-triethoxy-silane and perfluorodecyl-triethoxy-silane. We studied the process related to PSi films (PSiFs), which were characterized by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and field emission scanning electron microscopy (FESEM) before and after a plasma patterning process. The analyses confirmed the surface oxidation and the anchorage of the organosilane backbone. We further highlighted the surface analytical potential of 13C, 19F and 29Si solid-state NMR (SS-NMR) as compared to Fourier transformed infrared spectroscopy (FTIR) in the characterization of functionalized PSi particles (PSiPs). The reduced invasiveness of the organosilanization regarding the PSiPs morphology was confirmed using transmission electron microscopy (TEM) and FESEM. Relevantly, the results obtained on PSiPs complemented those obtained on PSiFs. SS-NMR suggests a number of siloxane bonds between the organosilane and the PSiPs, which does not reach levels of maximum heterogeneous condensation, while ToF-SIMS suggested a certain degree of organosilane polymerization. Additionally, differences among the carbons in the organic (non-hydrolyzable) functionalizing groups are identified, especially in the case of the perfluorodecyl group. The spectroscopic characterization was used to propose a mechanism for the visible light activation of the organosilane assembly, which is based on the initial photoactivated oxidation of the PSi matrix.

11.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159254

ABSTRACT

Memristors are two terminal electronic components whose conductance depends on the amount of charge that has flown across them over time. This dependence can be gradual, such as in synaptic memristors, or abrupt, as in resistive switching memristors. Either of these memory effects are very promising for the development of a whole new generation of electronic devices. For the successful implementation of practical memristors, however, the development of low cost industry compatible memristive materials is required. Here the memristive properties of differently processed porous silicon structures are presented, which are suitable for different applications. Electrical characterization and SPICE simulations show that laser-carbonized porous silicon shows a strong synaptic memristive behavior influenced by defect diffusion, while wet-oxidized porous silicon has strong resistance switching properties, with switching ratios over 8000. Results show that practical memristors of either type can be achieved with porous silicon whose memristive properties can be adjusted by the proper material processing. Thus, porous silicon may play an important role for the successful realization of practical memristorics with cost-effective materials and processes.

12.
Article in English | MEDLINE | ID: mdl-26029688

ABSTRACT

For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments.

13.
Colloids Surf B Biointerfaces ; 126: 146-53, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25546837

ABSTRACT

Surface micropatterns are relevant instruments for the in vitro analysis of cell cultures in non-conventional planar conditions. In this work, two semiconductors (Si and TiO2) have been micropatterned by combined ion-beam/chemical-etching processes leading to selective areas bearing nanorough features. A preferential affinity of human mesenchymal stem cells (hMSCs) for planar areas versus nanotopographic ones is observed. Fluorescence microscopy after ß-catenin staining suggests that hMSCs adhesion is inhibited on nanostructured porous silicon areas. This has a direct impact in the development of actin fibers and suggests different cell migration mechanisms on the materials of a micropattern. hMSCs organization on nanotopographic micropatterns has been modeled by using a simplified random walk approach. The model attributes preferential cell mobilities on the nanotopographic areas with respect to the planar and considers purely stochastic movement with no inertial term. Simulations of the cell distribution have been run on 1D and 2D micropatterns and compared with the real hMSC cultures. The simulations allow defining two regimes for cell organization as a function of cell density. hMSCs ordering on planar areas is diffusion-induced in most micropatterns but constriction forced disorder appears for high cell densities. The relative mobility on the planar versus nanotopographic areas can be used as a quality indicator of the nanotopography contrasts in the diffusion induced ordering regime. It is shown that the relative mobility is favorable for the TiO2 versus the Si based system, and allows envisaging its use for the calibrated design of nanotopography based micropatterned materials.


Subject(s)
Mesenchymal Stem Cells/cytology , Nanostructures/chemistry , Nanotechnology , Silicon/chemistry , Titanium/chemistry , Humans , Particle Size , Semiconductors , Surface Properties
14.
Expert Opin Drug Deliv ; 11(8): 1273-83, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24941438

ABSTRACT

INTRODUCTION: The particular properties of nanostructured porous silicon (nanoPS) make it an attractive material for controlled and localized release of therapeutics within the body, aiming at increased efficacy and reduced risks of potential side effects. Since this is a rapidly evolving field as a consequence of the number of research groups involved, a critical review of the state of the art is necessary. AREAS COVERED: In this work, the most promising and successful applications of nanoPS in the field of drug delivery are reviewed and discussed. Two key issues such as drug loading and release are also analyzed in detail. The development of multifunctional (hybrid) systems, aiming at imparting additional functionalities to the nanoPS particles such as luminescence, magnetic response and/or plasmonic effects (allowing simultaneous tracking and guiding), is also examined. EXPERT OPINION: Nanostructured materials based on silicon are promising platforms for pharmaceutical applications given their ability to degrade and low toxicity. However, a very limited number of clinical applications have been demonstrated so far.


Subject(s)
Chemistry, Pharmaceutical , Drug Delivery Systems , Nanoparticles/chemistry , Silicon/chemistry , Animals , Humans , Nanostructures , Pharmaceutical Preparations , Porosity
15.
Colloids Surf B Biointerfaces ; 115: 310-6, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24388860

ABSTRACT

Nanostructured porous silicon (PSi) elicits as a very attractive material for future biosensing systems due to its high surface area, biocompatibility and well-established fabrication methods. In order to engineer its performance as a biosensor transducer platform, the density of immunoglobulins properly immobilized and oriented onto the surface needs to be optimized. In this work we fabricated and characterized a novel biosensing system focusing on the improvement of the biofunctionalization cascade. The system consists on a chemically oxidized PSi platform derivatized with 3-aminopropyltriethoxysilane (APTS) that is coupled to Staphylococcus protein A (SpA). The chemical oxidation has previously demonstrated to enhance the biofunctionalization process and here "by implementing SpA" a molecularly oriented immunosensor is achieved. The biosensor system is characterized in terms of its chemical composition, wettability and optical reflectance. Finally, this system is successfully exploited to develop a biosensor for detecting asymmetric dimethylarginine (ADMA), an endogenous molecule involved in cardiovascular diseases. Therefore, this work is relevant from the point of view of design and optimization of the biomolecular immobilization cascade on PSi surfaces with the added value of contribution to the development of new assays for detecting ADMA with a view on prevention of cardiovascular diseases.


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Silicon/chemistry , Staphylococcal Protein A/metabolism , Arginine/analogs & derivatives , Arginine/analysis , Biomarkers/analysis , Immunoglobulins/metabolism , Microscopy, Fluorescence , Nanostructures/ultrastructure , Oxidation-Reduction , Photoelectron Spectroscopy , Porosity , Spectroscopy, Fourier Transform Infrared , Water/chemistry
16.
ACS Appl Mater Interfaces ; 6(4): 2884-92, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24450851

ABSTRACT

Stratified optical filters with distinct spectral features and layered surface chemistry were prepared on silicon substrates with stepwise anodic porosification and thermal carbonization. The use of differing parameters for successive carbonization treatments enabled the production of hydrolytically stable porous silicon-based layered optical structures where the adsorption of water to the lower layer is inhibited. This enables selective shifting of reflectance bands by means of liquid infiltration. The merit of using thermal carbonization for creating layered functionality was demonstrated by comparing the hydrolytic stability resulting from this approach to other surface chemistries available for Si. The functionality of the stratified optical structures was demonstrated under water and ethanol infiltration, and changes in the adsorption properties after 9 months of storage were evaluated. The changes observed in the structure were explained using simulations based on the transfer matrix method and the Bruggeman effective medium approximation. Scanning electron microscopy was used for imaging the morphology of the porous structure. Finally, the adaptability of the method for preparing complex structures was demonstrated by stacking superimposed rugate structures with several reflective bands.

17.
ACS Appl Mater Interfaces ; 6(3): 1719-28, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24428409

ABSTRACT

In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 µm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 µm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.


Subject(s)
Dental Pulp/cytology , Mesenchymal Stem Cells/cytology , Silicon/pharmacology , Tissue Scaffolds/chemistry , Adolescent , Bromodeoxyuridine/metabolism , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/ultrastructure , Microscopy, Fluorescence , Porosity , Water/chemistry
18.
Article in English | MEDLINE | ID: mdl-23744635

ABSTRACT

In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

19.
J Biomed Mater Res B Appl Biomater ; 101(8): 1463-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24591224

ABSTRACT

In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period.


Subject(s)
Biocompatible Materials/chemistry , Cell Culture Techniques , Lasers , Metal Nanoparticles/chemistry , Porosity , Silicon/chemistry , Air , Cells, Cultured/cytology , Humans , Mesenchymal Stem Cells/cytology , Nanostructures , Optics and Photonics , Surface Properties
20.
Nanoscale Res Lett ; 7(1): 449, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22876764

ABSTRACT

A novel fabrication method of Si photonic slabs based on the selective formation of porous silicon is reported. Free-standing square lattices of cylindrical air holes embedded in a Si matrix can be achieved by proton beam irradiation followed by electrochemical etching of Si wafers. The photonic band structures of these slabs show several gaps for the two symmetry directions for reflection through the z-plane. The flexibility of the fabrication method for tuning the frequency range of the gaps over the near- and mid-infrared ranges is demonstrated. This tunability can be achieved by simply adjusting the main parameters in the fabrication process such as the proton beam line spacing, proton fluence, or anodization current density. Thus, the reported method opens a promising route towards the fabrication of Si-based photonic slabs, with high flexibility and compatible with the current microelectronics industry.

SELECTION OF CITATIONS
SEARCH DETAIL