Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
FASEB J ; 37(9): e23120, 2023 09.
Article in English | MEDLINE | ID: mdl-37527279

ABSTRACT

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Subject(s)
Tumor Necrosis Factor-alpha , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mice , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Down-Regulation , Hypothalamus/metabolism
2.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36598900

ABSTRACT

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Subject(s)
Glucose Intolerance , Obesity, Maternal , Humans , Female , Animals , Mice , Pregnancy , Blood-Brain Barrier/metabolism , Median Eminence/metabolism , Obesity, Maternal/metabolism , Mothers , Glucose Intolerance/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Maternal Nutritional Physiological Phenomena
3.
Clin Sci (Lond) ; 133(22): 2345-2360, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31722009

ABSTRACT

There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.


Subject(s)
Docosahexaenoic Acids/physiology , Wound Healing , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Dietary Supplements , Fatty Acid Desaturases/genetics , Inflammation , Macrophages/physiology , Male , Mice, Transgenic , Neutrophils/physiology , Skin/metabolism
4.
J Dev Orig Health Dis ; 14(2): 223-230, 2023 04.
Article in English | MEDLINE | ID: mdl-36097652

ABSTRACT

Developmental programming studies using mouse models have housed the animals at human thermoneutral temperatures (22°C) which imposes constant cold stress. As this impacts energy homeostasis, we investigated the effects of two housing temperatures (22°C and 30°C) on obesity development in male and female offspring of Control and FR dams. Pregnant mice were housed at 22°C (cold-exposed, CE) or 30°C (thermoneutrality, TN) room temperature. At gestational age e10, mice were fed either an ad libitum diet (Control) or were 30% food-restricted (FR) to produce low birth weight newborns. Following delivery, all dams were fed an ad libitum diet and maternal mice continued to nurse their own pups. At 3 weeks of age, offspring were weaned to an ad libitum diet and housed at similar temperatures as their mothers. Body weights and food intake were monitored. At 6 months of age, body composition and glucose tolerance test were determined, after which, brain and adipose tissue were collected for analysis. FR/CE and FR/TN offspring exhibited hyperphagia and were significantly heavier with increased adiposity as compared to their respective Controls. There was sex-specific effects of temperature in both groups. Male offspring at TN were heavier with increased body fat, though the food intake was decreased as compared to CE males. This was reflected by hypertrophic adipocytes and increased arcuate nucleus satiety/appetite ratio. In contrast, female offspring were not impacted by housing temperature. Thus, unlike female offspring, there was a significant interaction of diet and temperature evident in the male offspring with accentuated adverse effects evident in FR/TN males.


Subject(s)
Adipose Tissue , Obesity , Pregnancy , Humans , Animals , Male , Female , Mice , Obesity/etiology , Obesity/metabolism , Adipose Tissue/metabolism , Diet , Adiposity , Weaning
5.
Brain Sci ; 12(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35884707

ABSTRACT

Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix-loop-helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways.

6.
Sci Rep ; 11(1): 8980, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903707

ABSTRACT

Nutritional status during gestation may lead to a phenomenon known as metabolic programming, which can be triggered by epigenetic mechanisms. The Let-7 family of microRNAs were one of the first to be discovered, and are closely related to metabolic processes. Bioinformatic analysis revealed that Prkaa2, the gene that encodes AMPK α2, is a predicted target of Let-7. Here we aimed to investigate whether Let-7 has a role in AMPKα2 levels in the NAFLD development in the offspring programmed by maternal obesity. Let-7 levels were upregulated in the liver of newborn mice from obese dams, while the levels of Prkaa2 were downregulated. Let-7 levels strongly correlated with serum glucose, insulin and NEFA, and in vitro treatment of AML12 with glucose and NEFA lead to higher Let-7 expression. Transfection of Let-7a mimic lead to downregulation of AMPKα2 levels, while the transfection with Let-7a inhibitor impaired both NEFA-mediated reduction of Prkaa2 levels and the fat accumulation driven by NEFA. The transfection of Let-7a inhibitor in ex-vivo liver slices from the offspring of obese dams restored phospho-AMPKα2 levels. In summary, Let-7a appears to regulate hepatic AMPKα2 protein levels and lead to the early hepatic metabolic disturbances in the offspring of obese dams.


Subject(s)
AMP-Activated Protein Kinases/biosynthesis , Gene Expression Regulation , Lipid Metabolism , Liver/metabolism , MicroRNAs/biosynthesis , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Female , Liver/pathology , Mice , Pregnancy
7.
PLoS One ; 15(9): e0239876, 2020.
Article in English | MEDLINE | ID: mdl-32997706

ABSTRACT

This study investigated the effect of non-periodized training performed at 80, 100 and 120% of the anaerobic threshold intensity (AnT) and a linear periodized training model adapted for swimming rats on the gene expression of monocarboxylate transporters 1 and 4 (MCT1 and 4, in soleus and gastrocnemius muscles), protein contents, blood biomarkers, tissue glycogen, body mass, and aerobic and anaerobic capacities. Sixty Wistar rats were randomly divided into 6 groups (n = 10 per group): a baseline (BL; euthanized before training period), a control group (GC; not exercised during the training period), three groups exercised at intensities equivalent to 80, 100 and 120% of the AnT (G80, G100 and G120, respectively) at the equal workload and a linear periodized training group (GPE). Each training program lasted 12 weeks subdivided into three periods: basic mesocycle (6 weeks), specific mesocycle (5 weeks) and taper (1 week). Although G80, G100 and G120 groups were submitted to monotony workload (i.e. non-modulation at intensity or volume throughout the training program), rodents were evaluated during the same experimental timepoints as GPE to be able comparisons. Our main results showed that all training programs were capable to minimize the aerobic capacity decrease promoted by age, which were compared to control group. Rats trained in periodization model had reduced levels of lipid blood biomarkers and increased hepatic glycogen stores compared to all other trained groups. At the molecular level, only expressions of MCT1 in the muscle were modified by different training regimens, with MCT1 mRNA increasing in rats trained at lower intensities (G80), and MCT1 protein content showed higher values in non-periodized groups compared to pre-training and GPE. Here, training at different intensities but at same total workload promoted similar adaptations in rats. Nevertheless, our results suggested that periodized training seems to be optimize the physiological responses of rats.


Subject(s)
Adaptation, Physiological , Anaerobic Threshold , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Swimming/physiology , Symporters/metabolism , Adipose Tissue, Brown/metabolism , Animals , Biomarkers/blood , Body Weight , Glycogen/metabolism , Male , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Symporters/genetics , Up-Regulation
8.
Rev Neurosci ; 20(5-6): 441-9, 2009.
Article in English | MEDLINE | ID: mdl-20397624

ABSTRACT

The prevalence of obesity has grown to an alarming magnitude, affecting more than 300 million humans worldwide. Although in most instances obesity is caused by excessive caloric consumption, only recently have we begun to understand the mechanisms involved in the loss of balance between caloric intake and energy expenditure. In the hypothalamus, groups of specialized neurons provide the signals that, under physiological conditions, determine the stability of body mass. Recent studies have shown that under certain environmental and genetic conditions, this equilibrium is lost and body adiposity may increase. Here, we review the work that provided the basis for the current understanding of hypothalamic dysfunction and the genesis of obesity.


Subject(s)
Hypothalamus/physiopathology , Obesity/pathology , Animals , Humans , Hypothalamus/metabolism , Insulin/metabolism , Leptin/metabolism
9.
Life Sci ; 82(25-26): 1262-71, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18534630

ABSTRACT

The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Citric Acid/pharmacology , Glucose/metabolism , Homeostasis/drug effects , Hypothalamus/enzymology , Liver/metabolism , Satiety Response/drug effects , AMP-Activated Protein Kinases , Animals , Body Weight/drug effects , Citric Acid/administration & dosage , Corticosterone/blood , Feeding Behavior/drug effects , Glucose Tolerance Test , Glycogen/metabolism , Hypothalamus/drug effects , Injections, Intraventricular , Insulin/blood , Liver/enzymology , Male , Multienzyme Complexes/metabolism , Phosphorylation/drug effects , Propanolamines , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
10.
Peptides ; 28(5): 1050-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17459524

ABSTRACT

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-alpha promotes a reduction of 25% in 12h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-alpha increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NFkappaB, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-alpha activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-alpha, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus.


Subject(s)
Cell Respiration/drug effects , Eating/drug effects , Hypothalamus/drug effects , Insulin/metabolism , Leptin/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Forkhead Transcription Factors/metabolism , Hypothalamus/metabolism , Immunoblotting , Immunoprecipitation , Insulin/administration & dosage , Insulin/pharmacology , Janus Kinase 2/metabolism , Leptin/administration & dosage , Leptin/pharmacology , Male , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Time Factors , Tumor Necrosis Factor-alpha/administration & dosage
11.
Life Sci ; 78(12): 1352-61, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16229859

ABSTRACT

Non-enzymatic glycation is implicated in the development of various diseases such as Alzheimer's and diabetes mellitus. However, it is also observed during the physiologic process of aging. There is considerable interest in the contribution of oxidative stress to diabetes mellitus. An increase in the generation of reactive oxygen species can occur by non-enzymatic glycation and glucose autoxidation. Both of these processes lead to the formation of AGEs (Advanced glycation end-products) that contribute to the irreversible modification of enzymes, proteins, lipids and DNA. In this study, the effect of chronic hyperglycemia on the antioxidant system of diabetic rats was evaluated. The working hypothesis is that the loss of glucose homeostasis reduces the capacity to respond to oxidative damage. The enzymatic activities of CAT (catalase), GPx (gluthatione peroxidase), GR (gluthatione reductase) and GSH (reduced gluthatione) were increased in the blood of healthy rats subjected to endurance training, whereas, in diabetic rats the activities of CAT, GPx and GR were unaltered by similar training. SOD showed low activity in endurance-trained rats. The administration of aminoguanidine (an inhibitor of glycation reactions) in the drinking water increased the activities of CAT, GPx and GR, suggesting that glycation may be responsible for the partial inactivation of these enzymes. These results indicate that the association of hyperglycemia with strenuous physical exercise may induce cellular damage by impairing the antioxidant defense system.


Subject(s)
Antioxidants/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Enzyme Inhibitors/therapeutic use , Guanidines/therapeutic use , Lipid Peroxidation/drug effects , Animals , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 1/blood , Glycation End Products, Advanced/metabolism , Hemoglobins/metabolism , Male , Nitric Oxide Synthase/antagonists & inhibitors , Rats , Rats, Wistar
12.
Endocrinology ; 157(12): 4803-4816, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27732087

ABSTRACT

A temporary and reversible inhibition of the hypothalamo-pituitary-gonadal axis is adaptive when energy reserves are diminished, allowing individual survival and energy accumulation for eventual reproduction. The AMP-activated protein kinase (AMPK) works as a cellular sensor of the AMP to ATP ratio and ultimately of energy availability. Activation of AMPK suppresses ATP-consuming processes and stimulates ATP-producing pathways. The AMPK α2 catalytic subunit is expressed in multiple hypothalamic nuclei including those associated with reproductive control, ie, the anteroventral periventricular nucleus and the arcuate nucleus. Subsets of kisspeptin neurons in the anteroventral periventricular nucleus (20% in females) and arcuate nucleus (45% in males and 65% in females) coexpress AMPKα2 mRNA. Using the Cre-loxP approach, we assessed whether AMPKα2 in Kiss1 cells is required for body weight and reproductive function. The AMPKα2-deleted mice show no difference in body weight and time for sexual maturation compared with controls. Males and females are fertile and have normal litter size. The AMPKα2-deleted and control females have similar estradiol feedback responses and show no difference in Kiss1 mRNA expression after ovariectomy or ovariectomy plus estradiol replacement. In males, acute fasting decreased Kiss1 mRNA expression in both groups, but no effect was observed in females. However, after an acute fasting, control mice displayed prolonged diestrous phase, but AMPKα2-deleted females showed no disruption of estrous cycles. Our findings demonstrate that the AMPKα2 catalytic subunit in Kiss1 cells is dispensable for body weight and reproductive function in mice but is necessary for the reproductive adaptations to conditions of acute metabolic distress.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fasting/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Neurons/metabolism , Sexual Maturation/physiology , Animals , Body Weight/physiology , Estrous Cycle/metabolism , Female , Male , Mice , Mice, Knockout
13.
J Nutr Biochem ; 34: 30-41, 2016 08.
Article in English | MEDLINE | ID: mdl-27180121

ABSTRACT

Nutritional excess during pregnancy and lactation has a negative impact on offspring phenotype. In adulthood, obesity and lipid overload represent factors that compromise autophagy, a process of lysosomal degradation. Despite knowledge of the impact of obesity on autophagy, changes in offspring of obese dams have yet to be investigated. In this study, we tested the hypothesis that maternal obesity induced by a high fat diet (HFD) modulates autophagy proteins in the hypothalamus and liver of the offspring of mice. At birth (d0), offspring of obese dams (HFD-O) showed an increase in p62 protein and a decrease in LC3-II, but only in the liver. After weaning (d18), the offspring of HFD-O animals showed impairment of autophagy markers in both tissues compared to control offspring (SC-O). Between day 18 and day 42, both groups received a control diet and we observed that the protein content of p62 remained increased in the livers of the HFD-O offspring. However, after 82days, we did not find any modulation in offspring autophagy proteins. On the other hand, when the offspring of obese dams that received an HFD from day 42 until day 82 (OH-H) were compared with the offspring from the controls that only received an HFD in adulthood (OC-H), we saw impairment in autophagy proteins in both tissues. In conclusion, this study describes that HFD-O offspring showed early impairment of autophagy proteins. Although the molecular mechanisms have not been explored, it is possible that changes in autophagy markers could be associated with metabolic disturbances of offspring.


Subject(s)
Gene Expression Regulation, Developmental , Hypothalamus/metabolism , Lactation , Liver/metabolism , Maternal Nutritional Physiological Phenomena , Microtubule-Associated Proteins/metabolism , Sequestosome-1 Protein/metabolism , Animals , Animals, Newborn , Diet, High-Fat/adverse effects , Female , Fetal Development , Male , Mice , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Obesity/etiology , Obesity/physiopathology , Organ Specificity , Pediatric Obesity/etiology , Pediatric Obesity/metabolism , Pediatric Obesity/pathology , Pregnancy , Pregnancy Complications/etiology , Pregnancy Complications/physiopathology , Random Allocation , Sequestosome-1 Protein/genetics , Weaning
14.
PLoS One ; 10(3): e0119850, 2015.
Article in English | MEDLINE | ID: mdl-25786112

ABSTRACT

Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.


Subject(s)
Animal Nutritional Physiological Phenomena , Autophagy/physiology , Fatty Acids/metabolism , Hypothalamus/physiology , Obesity/physiopathology , Analysis of Variance , Animals , Cell Line , Fluorescent Antibody Technique , Glucose Tolerance Test , Hypothalamus/metabolism , Immunoblotting , MAP Kinase Kinase 4/metabolism , Male , Mice , Mice, Obese , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , bcl-2-Associated X Protein/metabolism
15.
Endocrinology ; 144(10): 4586-96, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12960061

ABSTRACT

Angiotensin II (Ang II) exerts a potent growth stimulus on the heart and vascular wall. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) intracellular signaling pathway by Ang II mediates at least some of the mitogenic responses to this hormone. In other signaling systems that use the JAK/STAT pathway, proteins of the suppressor of cytokine signaling (SOCS) family participate in signal regulation. In the present study it is demonstrated that SOCS3 is constitutively expressed at a low level in rat heart and neonatal rat ventricular myocytes. Ang II at a physiological concentration enhances the expression of SOCS3 mRNA and protein, mainly via AT1 receptors. After induction, SOCS3 associates with JAK2 and impairs further activation of the JAK2/STAT1 pathway. Pretreatment of rats with a specific phosphorthioate antisense oligonucleotide to SOCS3, reverses the desensitization to angiotensin signaling, as detected by a fall in c-Jun expression after repetitive infusions of the hormone. Thus, SOCS3 is induced by Ang II in rat heart and neonatal rat ventricular myocytes and participates in the modulation of the signal generated by this hormone.


Subject(s)
Angiotensin II/pharmacology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Proteins/metabolism , Proto-Oncogene Proteins , Repressor Proteins , Transcription Factors , Animals , Heart/drug effects , Janus Kinase 2 , Male , Oligonucleotides, Antisense/pharmacology , Phosphorylation/drug effects , Protein-Tyrosine Kinases/metabolism , Proteins/genetics , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin/metabolism , Signal Transduction/physiology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins , Tissue Distribution , Tyrosine/metabolism
16.
Endocrinology ; 144(11): 4831-40, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12960043

ABSTRACT

Short-term cold exposure of homeothermic animals leads to higher thermogenesis and food consumption accompanied by weight loss. An analysis of cDNA-macroarray was employed to identify candidate mRNA species that encode proteins involved in thermogenic adaptation to cold. A cDNA-macroarray analysis, confirmed by RT-PCR, immunoblot, and RIA, revealed that the hypothalamic expression of melanin-concentrating hormone (MCH) is enhanced by exposure of rats to cold environment. The blockade of hypothalamic MCH expression by antisense MCH oligonucleotide in cold-exposed rats promoted no changes in feeding behavior and body temperature. However, MCH blockade led to a significant drop in body weight, which was accompanied by decreased liver glycogen, increased relative body fat, increased absolute and relative interscapular brown adipose tissue mass, increased uncoupling protein 1 expression in brown adipose tissue, and increased consumption of lean body mass. Thus, increased hypothalamic MCH expression in rats exposed to cold may participate in the process that allows for efficient use of energy for heat production during thermogenic adaptation to cold.


Subject(s)
Cold Temperature , Energy Metabolism/physiology , Hypothalamic Hormones/physiology , Hypothalamus/metabolism , Melanins/physiology , Pituitary Hormones/physiology , Adaptation, Physiological , Adipose Tissue, Brown/metabolism , Animals , Body Composition , Body Temperature Regulation , Body Weight/physiology , Carrier Proteins/metabolism , Eating/physiology , Gene Expression Profiling , Glycogen/metabolism , Hypothalamic Hormones/metabolism , Ion Channels , Liver/metabolism , Male , Melanins/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins , Muscle, Skeletal/metabolism , Oligonucleotide Array Sequence Analysis , Oxygen Consumption/physiology , Pituitary Hormones/metabolism , Rats , Rats, Wistar , Uncoupling Protein 1
17.
J Endocrinol ; 181(1): 117-28, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15072572

ABSTRACT

Angiotensin II exerts a potent dypsogenic stimulus on the hypothalamus, which contributes to its centrally mediated participation in the control of water balance and blood pressure. Repetitive intracerebroventricular (i.c.v.) injections of angiotensin II lead to a loss of effect characterized as physiological desensitization to the peptide's action. In the present study, we demonstrate that angiotensin II induces the expression of suppressor of cytokine signaling (SOCS)-3 via angiotensin receptor 1 (AT1) and JAK-2, mostly located at the median preoptic lateral and anterodorsal preoptic nuclei. SOCS-3 produces an inhibitory effect upon the signal transduction pathways of several cytokines and hormones that employ members of the JAK/STAT families as intermediaries. The partial inhibition of SOCS-3 translation by antisense oligonucleotide was sufficient to significantly reduce the refractoriness of repetitive i.c.v. angiotensin II injections, as evaluated by water ingestion. Thus, by acting through AT1 on the hypothalamus, angiotensin II induces the expression of SOCS-3 which, in turn, blocks further activation of the pathway and consequently leads to desensitization to angiotensin II stimuli concerning its dypsogenic effect.


Subject(s)
Angiotensin II/pharmacology , Drinking Behavior/drug effects , Hypothalamus/metabolism , Proto-Oncogene Proteins , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Animals , Depression, Chemical , Hypothalamus/chemistry , Hypothalamus/drug effects , Immunohistochemistry , Injections, Intraventricular , Janus Kinase 2 , Male , Oligonucleotides, Antisense/pharmacology , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins , Transcription Factors/genetics
18.
Comp Biochem Physiol B Biochem Mol Biol ; 134(2): 389-95, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12568815

ABSTRACT

In order to help elucidate the evolution of alpha-globins, the complete cDNA and amino acid sequences of Geochelone carbonaria and Geochelone denticulata land turtles alpha-D chains have been described. In G. carbonaria, the cDNA is 539 bp with ATG start codon located at position 46, TGA stop codon at position 469 and AATAAA polyadenylation signal at position 520. In G. denticulata, the cDNA is 536 bp with ATG start codon located at position 46, TGA stop codon at position 469 and AATAAA polyadenylation signal at position 517. Both cDNAs codify 141 amino acid residues, differing from each other in only four amino acid residues. When comparing with human Hb alpha-chain, alterations in important regions can be noted: alpha110 Ala-Gly, alpha114 Pro-Gly, alpha117 Phe-Tyr and alpha122 His-Gln. There is a high homology between the amino acids of these turtles when compared with chicken alpha-D chains, progressively decreasing when compared with human, crocodile, snake, frog and fish alpha-chains. Phylogenetic analysis of alpha-D chains shows that those of turtles are closer to those of birds than to snakes and lizards.


Subject(s)
Hemoglobins, Abnormal/chemistry , Hemoglobins, Abnormal/genetics , Turtles/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Humans , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
19.
PLoS One ; 8(4): e62669, 2013.
Article in English | MEDLINE | ID: mdl-23626844

ABSTRACT

BACKGROUND: Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. METHODOLOGY/PRINCIPAL FINDINGS: In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. CONCLUSION/SIGNIFICANCE: Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/genetics , Hypothalamus/metabolism , Liver/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Body Weight , Diet , Gene Expression Regulation , Gluconeogenesis/physiology , Hormones/blood , Male , Oligonucleotides/administration & dosage , Phosphorylation , Rats
20.
J Nutr Biochem ; 23(4): 341-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21543214

ABSTRACT

The exposure to an increased supply of nutrients before birth may contribute to offspring obesity. Offspring from obese dams that chronically consume a high-fat diet present clinical features of metabolic syndrome, liver lipid accumulation and activation of c-Jun N-terminal kinases (JNK) consistent with the development of nonalcoholic fatty liver disease (NAFLD). However, in spite of the importance of the resistance to insulin for the development of NAFLD, the molecular alterations in the liver of adult offspring of obese dams are yet to be investigated. In this study, we tested the hypothesis that the consumption of excessive saturated fats during pregnancy and lactation contributes to adult hepatic metabolic dysfunction in offspring. Adult male offspring of dams fed a high-fat diet (HN) during pregnancy and lactation exhibited increased fat depot weight; increased serum insulin, tumor necrosis factor α and interleukin 1ß; and reduced serum triglycerides. Liver showed increased JNK and I kappa B kinase phosphorylation and PEPCK expression in the adult. In addition, liver triglyceride content in the offspring 1 week after weaning and in the adult was increased. Moreover, basal ACC phosphorylation and insulin signaling were reduced in the liver from the HN group as compared to offspring of dams fed a standard laboratory chow (NN). Hormone-sensitive lipase phosphorylation (Ser565) was reduced in epididymal adipose tissue from the HN group as compared to the NN group. It is interesting that all changes observed were independent of postweaning diet in 14-week-old offspring. Therefore, these data further reinforce the importance of maternal nutrition to adult offspring health.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/etiology , Insulin Resistance , Lactation , Maternal Nutritional Physiological Phenomena , Obesity/physiopathology , Adipose Tissue/metabolism , Animals , Fatty Liver/physiopathology , Female , I-kappa B Kinase/metabolism , Insulin/blood , Interleukin-1beta , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Obesity/etiology , Phosphorylation , Pregnancy , Sterol Esterase/metabolism , Triglycerides/blood , Tumor Necrosis Factor-alpha/blood , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL