Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 142(6): 930-42, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20850014

ABSTRACT

Although genome-wide hypomethylation is a hallmark of many cancers, roles for active DNA demethylation during tumorigenesis are unknown. Here, loss of the APC tumor suppressor gene causes upregulation of a DNA demethylase system and the concomitant hypomethylation of key intestinal cell fating genes. Notably, this hypomethylation maintained zebrafish intestinal cells in an undifferentiated state that was released upon knockdown of demethylase components. Mechanistically, the demethylase genes are directly activated by Pou5f1 and Cebpß and are indirectly repressed by retinoic acid, which antagonizes Pou5f1 and Cebpß. Apc mutants lack retinoic acid as a result of the transcriptional repression of retinol dehydrogenase l1 via a complex that includes Lef1, Groucho2, Ctbp1, Lsd1, and Corest. Our findings imply a model wherein APC controls intestinal cell fating through a switch in DNA methylation dynamics. Wild-type APC and retinoic acid downregulate demethylase components, thereby promoting DNA methylation of key genes and helping progenitors commit to differentiation.


Subject(s)
Adenomatous Polyposis Coli Protein/metabolism , Adenomatous Polyposis Coli/metabolism , DNA Methylation , Intestines/embryology , Zebrafish/embryology , Adenomatous Polyposis Coli/pathology , Alcohol Oxidoreductases/metabolism , Animals , Brain/cytology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line, Tumor , Cell Proliferation , Co-Repressor Proteins/metabolism , Colonic Neoplasms/metabolism , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Octamer Transcription Factor-3/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Tretinoin/metabolism
2.
J Cell Biol ; 222(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37042842

ABSTRACT

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Subject(s)
Actins , Adaptor Proteins, Signal Transducing , Prostatic Neoplasms , Proto-Oncogene Proteins c-pim-1 , Humans , Male , Actins/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Hypoxia , Proteomics , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Signal Transduction , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Neoplasm Invasiveness
3.
Cells ; 11(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35326457

ABSTRACT

Proviral integration sites for Moloney murine leukemia virus (PIM) kinases are upregulated at the protein level in response to hypoxia and have multiple protumorigenic functions, promoting cell growth, survival, and angiogenesis. However, the mechanism responsible for the induction of PIM in hypoxia remains unknown. Here, we examined factors affecting PIM kinase stability in normoxia and hypoxia. We found that PIM kinases were upregulated in hypoxia at the protein level but not at the mRNA level, confirming that PIMs were upregulated in hypoxia in a hypoxia inducible factor 1-independent manner. PIM kinases were less ubiquitinated in hypoxia than in normoxia, indicating that hypoxia reduced their proteasomal degradation. We identified the deubiquitinase ubiquitin-specific protease 28 (USP28) as a key regulator of PIM1 and PIM2 stability. The overexpression of USP28 increased PIM protein stability and total levels in both normoxia and hypoxia, and USP28-knockdown significantly increased the ubiquitination of PIM1 and PIM2. Interestingly, coimmunoprecipitation assays showed an increased interaction between PIM1/2 and USP28 in response to hypoxia, which correlated with reduced ubiquitination and increased protein stability. In a xenograft model, USP28-knockdown tumors grew more slowly than control tumors and showed significantly lower levels of PIM1 in vivo. In conclusion, USP28 blocked the ubiquitination and increased the stability of PIM1/2, particularly in hypoxia. These data provide the first insight into proteins responsible for controlling PIM protein degradation and identify USP28 as an important upstream regulator of this hypoxia-induced, protumorigenic signaling pathway.


Subject(s)
Hypoxia , Proto-Oncogene Proteins c-pim-1 , Cell Line, Tumor , Deubiquitinating Enzymes , Humans , Hypoxia/metabolism , Mice , Proto-Oncogene Proteins c-pim-1/genetics , Ubiquitin Thiolesterase
4.
Mol Cancer Ther ; 20(1): 3-10, 2021 01.
Article in English | MEDLINE | ID: mdl-33303645

ABSTRACT

Cancer progression and the onset of therapeutic resistance are often the results of uncontrolled activation of survival kinases. The proviral integration for the Moloney murine leukemia virus (PIM) kinases are oncogenic serine/threonine kinases that regulate tumorigenesis by phosphorylating a wide range of substrates that control cellular metabolism, proliferation, and survival. Because of their broad impact on cellular processes that facilitate progression and metastasis in many cancer types, it has become clear that the activation of PIM kinases is a significant driver of resistance to various types of anticancer therapies. As a result, efforts to target PIM kinases for anticancer therapy have intensified in recent years. Clinical and preclinical studies indicate that pharmacologic inhibition of PIM has the potential to significantly improve the efficacy of standard and targeted therapies. This review focuses on the signaling pathways through which PIM kinases promote cancer progression and resistance to therapy, as well as highlights biological contexts and promising strategies to exploit PIM as a therapeutic target in cancer.


Subject(s)
Molecular Targeted Therapy , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Carcinogenesis/pathology , Drug Resistance, Neoplasm , Humans , Immune Evasion , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/immunology
5.
Oncogene ; 40(32): 5142-5152, 2021 08.
Article in English | MEDLINE | ID: mdl-34211090

ABSTRACT

Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mutation , Neoplasms/pathology , Phosphorylation , Protein Binding , Protein Stability , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics
6.
Oncogene ; 39(12): 2597-2611, 2020 03.
Article in English | MEDLINE | ID: mdl-31992853

ABSTRACT

Resistance to chemotherapy represents a major obstacle to the successful treatment of non-small-cell lung cancer (NSCLC). The goal of this study was to determine how PIM kinases impact mitochondrial dynamics, ROS production, and response to chemotherapy in lung cancer. Live-cell imaging and microscopy were used to determine the effect of PIM loss or inhibition on mitochondrial phenotype and ROS. Inhibition of PIM kinases caused excessive mitochondrial fission and significant upregulation of mitochondrial superoxide, increasing intracellular ROS. Mechanistically, we define a signaling axis linking PIM1 to Drp1 and mitochondrial fission in lung cancer. PIM inhibition significantly increased the protein levels and mitochondrial localization of Drp1, causing marked fragmentation of mitochondria. An inverse correlation between PIM1 and Drp1 was confirmed in NSCLC patient samples. Inhibition of PIM sensitized NSCLC cells to chemotherapy and produced a synergistic antitumor response in vitro and in vivo. Immunohistochemistry and transmission electron microscopy verified that PIM inhibitors promote mitochondrial fission and apoptosis in vivo. These data improve our knowledge about how PIM1 regulates mitochondria and provide justification for combining PIM inhibition with chemotherapy in NSCLC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/metabolism , Docetaxel/therapeutic use , Lung Neoplasms/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Datasets as Topic , Drug Resistance, Neoplasm , Dynamins/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Mice , Mice, SCID , Mitochondria/drug effects , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
7.
Am J Clin Exp Urol ; 7(4): 297-312, 2019.
Article in English | MEDLINE | ID: mdl-31511835

ABSTRACT

Bone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors. The first pathway involves integrin α6ß1-mediated adhesion to laminin and the second involves hypoxia-induced expression of PIM kinases. In vitro and in vivo models demonstrate that these pathways transduce parallel but independent signals that promote survival by reducing oxidative stress and preventing cell death. We further demonstrate that both pathways drive resistance to PI3K inhibitors in PTEN-negative tumors. These results provide preclinical evidence that combined inhibition of integrin α6ß1 and PIM kinase in CRPC is required to overcome tumor microenvironment-mediated resistance to PI3K inhibitors in PTEN-negative tumors within the hypoxic and laminin-rich bone microenvironment.

8.
Clin Cancer Res ; 24(1): 169-180, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29084916

ABSTRACT

Purpose: Patients develop resistance to antiangiogenic drugs, secondary to changes in the tumor microenvironment, including hypoxia. PIM kinases are prosurvival kinases and their expression increases in hypoxia. The goal of this study was to determine whether targeting hypoxia-induced PIM kinase expression is effective in combination with VEGF-targeting agents. The rationale for this therapeutic approach is based on the fact that antiangiogenic drugs can make tumors hypoxic, and thus more sensitive to PIM inhibitors.Experimental Design: Xenograft and orthotopic models of prostate and colon cancer were used to assess the effect of PIM activation on the efficacy of VEGF-targeting agents. IHC and in vivo imaging were used to analyze angiogenesis, apoptosis, proliferation, and metastasis. Biochemical studies were performed to characterize the novel signaling pathway linking PIM and HIF1.Results: PIM was upregulated following treatment with anti-VEGF therapies, and PIM1 overexpression reduced the ability of these drugs to disrupt vasculature and block tumor growth. PIM inhibitors reduced HIF1 activity, opposing the shift to a pro-angiogenic gene signature associated with hypoxia. Combined inhibition of PIM and VEGF produced a synergistic antitumor response characterized by decreased proliferation, reduced tumor vasculature, and decreased metastasis.Conclusions: This study describes PIM kinase expression as a novel mechanism of resistance to antiangiogenic agents. Our data provide justification for combining PIM and VEGF inhibitors to treat solid tumors. The unique ability of PIM inhibitors to concomitantly target HIF1 and selectively kill hypoxic tumor cells addresses two major components of tumor progression and therapeutic resistance. Clin Cancer Res; 24(1); 169-80. ©2017 AACR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation/drug effects , Hypoxia/genetics , Hypoxia/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Models, Molecular , Neoplasm Metastasis , Proteolysis , Proteome , Transcription, Genetic , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
9.
Antioxidants (Basel) ; 6(2)2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28383481

ABSTRACT

The importance of the tumor microenvironment for cancer progression and therapeutic resistance is an emerging focus of cancer biology. Hypoxia, or low oxygen, is a hallmark of solid tumors that promotes metastasis and represents a significant obstacle to successful cancer therapy. In response to hypoxia, cancer cells activate a transcriptional program that allows them to survive and thrive in this harsh microenvironment. Hypoxia-inducible factor 1 (HIF-1) is considered the main effector of the cellular response to hypoxia, stimulating the transcription of genes involved in promoting angiogenesis and altering cellular metabolism. However, growing evidence suggests that the cellular response to hypoxia is much more complex, involving coordinated signaling through stress response pathways. One key signaling molecule that is activated in response to hypoxia is nuclear factor, erythroid 2 like-2 (Nrf2). Nrf2 is a transcription factor that controls the expression of antioxidant-response genes, allowing the cell to regulate reactive oxygen species. Nrf2 is also activated in various cancer types due to genetic and epigenetic alterations, and is associated with poor survival and resistance to therapy. Emerging evidence suggests that coordinated signaling through Nrf2 and HIF-1 is critical for tumor survival and progression. In this review, we discuss the distinct and overlapping roles of HIF-1 and Nrf2 in the cellular response to hypoxia, with a focus on how targeting Nrf2 could provide novel chemotherapeutic modalities for treating solid tumors.

SELECTION OF CITATIONS
SEARCH DETAIL