Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Med Virol ; 96(10): e70010, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39443827

ABSTRACT

Despite decades of influenza surveillance in many African countries, little is known about the evolutionary dynamics of seasonal influenza viruses. This study aimed to characterize the epidemiological, genetic and antigenic profiles of A/H3N2 viruses in Senegal from 2010 to 2022. A/H3N2 infection was confirmed using reverse transcription-polymerase chain reaction. Subsequently, a representative of A/H3N2 isolates was selected for genome sequencing. Predicted vaccine efficacy was measured using the Pepitope model. During the study period, 22638 samples were tested and influenza was detected in 31.8%, among which type A was confirmed in 78.1%. Of the Influenza A cases, the H3N2 subtype was detected in 29.8%, peaking at expected times during the rainy season. Genome sequencing of 123A/H3N2 isolates yielded 24 complete and 99 partial genomic sequences. Phylogenetic analysis revealed the circulation of multiple clades of A/H3N2 in Senegal, including 2a.3, 3C.2 and 3C.3a. A/H3N2 isolates were mainly susceptible to the influenza antiviral drugs oseltamivir and zanamivir, but the primary adamantine-resistance marker, S31N was encountered in all isolates. At least nine potential N-linked glycosylation sites were predicted among A/H3N2 strains, six of which (at positions 24, 38, 79, 181, 262 and 301) remains conserved among all isolates. Antigenic distances between circulating strains and vaccine viruses indicated varying vaccine efficacies, from suboptimal to moderate protection. The findings emphasize the need to enhance local genomic and antigenic surveillance and further research on influenza epidemiology and genetic evolution in sub-Saharan Africa.


Subject(s)
Antigens, Viral , Influenza A Virus, H3N2 Subtype , Influenza, Human , Phylogeny , Senegal/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Adult , Antigens, Viral/genetics , Antigens, Viral/immunology , Young Adult , Child, Preschool , Female , Middle Aged , Adolescent , Male , Child , Aged , Antiviral Agents/therapeutic use , Infant , Influenza Vaccines/immunology , Epidemiological Monitoring , Genome, Viral , Seasons , Drug Resistance, Viral/genetics , Vaccine Efficacy , Evolution, Molecular , Aged, 80 and over
2.
Viruses ; 16(2)2024 02 06.
Article in English | MEDLINE | ID: mdl-38400037

ABSTRACT

Bataï virus (BATV), belonging to the Orthobunyavirus genus, is an emerging mosquito-borne virus with documented cases in Asia, Europe, and Africa. It causes various symptoms in humans and ruminants. Another related virus is Ilesha virus (ILEV), which causes a range of diseases in humans and is mainly found in African countries. This study aimed to genetically identify and characterize a BATV strain previously misclassified as ILEV in Senegal. The strain was reactivated and subjected to whole genome sequencing using an Illumina-based approach. Genetic analyses and phylogeny were performed to assess the evolutionary relationships. Genomic analyses revealed a close similarity between the Senegal strain and the BATV strains UgMP-6830 from Uganda. The genetic distances indicated high homology. Phylogenetic analysis confirmed the Senegal strain's clustering with BATV. This study corrects the misclassification, confirming the presence of BATV in West Africa. This research represents the first evidence of BATV circulation in West Africa, underscoring the importance of genomic approaches in virus classification. Retrospective sequencing is crucial for reevaluating strains and identifying potential public health threats among neglected viruses.


Subject(s)
Bunyamwera virus , Culicidae , Orthobunyavirus , Animals , Humans , Bunyamwera virus/genetics , Senegal , Phylogeny , Retrospective Studies , Orthobunyavirus/genetics , Genomics , Ruminants
3.
Viruses ; 15(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36851764

ABSTRACT

Bunyamwera virus is the prototype of the Bunyamwera serogroup, which belongs to the order Bunyavirales of the Orthobunyavirus genus in the Peribunyaviridae family. Bunyamwera is a negative-sense RNA virus composed of three segments S, M, and L. Genetic recombination is possible between members of this order as it is already documented. Additionally, it can lead to pathogenic or host range improvement, if it occurs with viruses of public health and agricultural importance such as Rift Valley fever virus and Crimea-Congo hemorrhagic fever virus. Here, we characterize five African Orthobunyavirus viruses from different geographical regions. Our results suggest that the five newly characterized strains are identified as Bunyamwera virus strains. Furthermore, two of the five strains sequenced in this study are recombinant strains, as fragments of their segments are carried by Ngari and Bunyamwera strains. Further investigations are needed to understand the functional impact of these recombinations.


Subject(s)
Bunyamwera virus , Hemorrhagic Fever Virus, Crimean-Congo , Orthobunyavirus , Animals , Orthobunyavirus/genetics , Bunyamwera virus/genetics , Whole Genome Sequencing , Recombination, Genetic
4.
J Virol Methods ; 311: 114638, 2023 01.
Article in English | MEDLINE | ID: mdl-36328081

ABSTRACT

The genus Flavivirus in the Flaviridae contains arthropod born viruses associated with high public health burdens like Zika, Dengue or Yellow fever. Saboya virus (SABV) is an understudied flavivirus grouping in the same genetic sub-group as Yellow Fever Virus (YFV) together with Sepik virus (SEPV) and Wesselbron virus (WSLV). Flavivirus infections are characterized by non-specific clinical presentations resulting in a high risk of misdiagnosis. SABV virus has been shown to circulate in the Sahelian zone and in central Africa. To study this virus we a qRT-PCR system based on TaqMan chemistry was developed to allow rapid and specific detection of SABV. The SABV assay was evaluated on available SABV isolates and others flaviviruses (DENV, ZIKV, YFV, WNV, KEDV). The system reliably detected all used SABV strains without cross amplification of other flaviviruses. In term of sensitivity the SABV assay detect up to 40.25 copies of SABV standard DNA molecule per ul. This system can be easily added to the available panel of arboviruses detection assays as a reliable tool to study virus prevalence in human, vertebrate and insect-vector samples.


Subject(s)
Dengue Virus , Flavivirus , Yellow Fever , Zika Virus Infection , Zika Virus , Humans , Flavivirus/genetics , Yellow Fever/diagnosis , Real-Time Polymerase Chain Reaction , Yellow fever virus/genetics
5.
Trop Med Infect Dis ; 8(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36828503

ABSTRACT

The mosquito-borne disease caused by the Rift Valley Fever Virus (RVFV) is a viral hemorrhagic fever that affects humans and animals. In 1987, RVFV emerged in Mauritania, which caused the first RVFV outbreak in West Africa. This outbreak was shortly followed by reported cases in humans and livestock in Senegal. Animal trade practices with neighboring Mauritania suggest northern regions of Senegal are at high risk for RVF. In this study, we aim to conduct a molecular and serological survey of RVFV in humans and livestock in Agnam (northeastern Senegal) by RT-PCR (reverse transcription real-time polymerase chain reaction) and ELISA (Enzyme-Linked Immunosorbent Assay), respectively. Of the two hundred fifty-five human sera, one (0.39%) tested RVFV IgM positive, while fifty-three (20.78%) tested positive for RVFV IgG. For animal monitoring, out of 30 sheep recorded and sampled over the study period, 20 (66.67%) showed seroconversion to RVFV IgG antibodies, notably during the rainy season. The presence of antibodies increased significantly with age in both groups (p < 0.05), as the force of RVF infection (FOI), increased by 16.05% per year for humans and by 80.4% per month for livestock sheep. This study supports the usefulness of setting up a One Health survey for RVF management.

6.
Viruses ; 14(5)2022 05 16.
Article in English | MEDLINE | ID: mdl-35632804

ABSTRACT

Influenza virus types A and B are responsible for acute viral infections that affect annually 1 billion people, with 290,000 to 650,000 deaths worldwide. In this study, we investigated the circulation of influenza B viruses over a 10-year period (2010-2019). Specimens from patients suspected of influenza infection were collected. Influenza detection was performed following RNA extraction and real-time RT-PCR. Genes coding for hemagglutinin (HA) and neuraminidase (NA) of influenza B viruses were partially sequenced, and phylogenetic analyses were carried out subsequently. During the study period, we received and tested a total of 15,156 specimens. Influenza B virus was detected in 1322 (8.7%) specimens. The mean age of influenza B positive patients was 10.9 years. When compared to reference viruses, HA genes from Senegalese circulating viruses showed deletions in the HA1 region. Phylogenetic analysis highlighted the co-circulation of B/Victoria and B/Yamagata lineage viruses with reassortant viruses. We also noted a clear seasonal pattern of circulation of influenza B viruses in Senegal.


Subject(s)
Influenza B virus , Influenza, Human , Child , Hemagglutinins , Humans , Influenza B virus/genetics , Influenza, Human/epidemiology , Neuraminidase/genetics , Phylogeny , Senegal/epidemiology
7.
Emerg Microbes Infect ; 11(1): 2711-2714, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36268900

ABSTRACT

A Crimean-Congo Hemorrhagic Fever Virus (CCHFV) survey in Agnam (North Senegal) permits the detection of three isolates in ticks. These isolates belong genetically to multiple genotypes (I, II, III) and clustered with strains from Uganda, Sudan, Mauritania, and Senegal. The role of ticks in CCHF emergence and widespread is highlighted.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ticks , Animals , Humans , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/diagnosis , Senegal/epidemiology , Health Surveys , Genotype
8.
Trop Med Infect Dis ; 7(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36288065

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is widespread in Asia, Europe, and Africa. In Senegal, sporadic cases of CCHFV have been reported since 1960. Bordering Mauritania in northeastern Senegal, Agnam is an arid area in the region of Matam where CCHFV is endemic, which harbors a pastoralist community. Given the drought conditions of Agnam, inhabitants are in constant movement with their animals in search of pasture, which brings them into contact with pathogens such as arboviruses. To identify CCHFV in this area, we established a One Health site in order to analyze animal livestock, ticks and human samples collected over a one-year period by qRT-PCR and ELISA. Our analysis showed one (1/364) patient carried anti-CCHFV IgM and thirty-seven carried anti-CCHFV IgG (37/364). In livestock, anti-CCHFV IgG was detected in 13 (38.24%) of 34 sentinel sheep. The risk of CCHFV infection increased significatively with age in humans (p-value = 0.00117) and sheep (p-value = 1.18 × 10-11). Additional risk factors for CCHFV infection in sheep were dry seasons (p-value = 0.004) and time of exposure (p-value = 0.007). Furthermore, we detected a total of three samples with CCHFV RNA within Rhipicephalus evertsi evertsi and Rhipicephalus guilhoni tick species. Our results highlighted the usefulness of a One Health survey of CCHFV in pastoral communities at risk of arboviruses.

SELECTION OF CITATIONS
SEARCH DETAIL