Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Ren Nutr ; 31(3): 248-256, 2021 05.
Article in English | MEDLINE | ID: mdl-32693970

ABSTRACT

OBJECTIVE: Chronic kidney disease (CKD) is associated with reduced insulin sensitivity, through mechanisms that are not well understood. Low vitamin K intake and incomplete carboxylation of the vitamin K-dependent protein osteocalcin may promote insulin resistance. We assessed relationships of osteocalcin concentration, carboxylation, and fragmentation with CKD and glucose homeostasis in a cross-sectional study. METHODS: We included 87 participants without diabetes: 50 (27 female) with moderate to severe CKD (estimated glomerular filtration rate <60 mL/min/1.73 m2 not treated with dialysis) and 37 (17 female) healthy controls. Total osteocalcin was measured by immunoassay, and osteocalcin carboxylation and fragmentation status by liquid chromatography-electrospray ionization-based mass spectrometric immunoassay. Endpoints included glucose tolerance (based on 2-hour oral glucose tolerance test), insulin sensitivity (hyperinsulinemic-euglycemic clamp), and pancreatic beta-cell function (intravenous glucose tolerance test). RESULTS: The total plasma osteocalcin concentration was higher in the CKD group (mean [standard deviation] 102.9 [147.5]) than that in the control group (53.6 [51.1] ng/mL, P = .03), and more osteocalcin was circulating as fragments. The extent of osteocalcin carbocylation did not differ between individuals with and without CKD. Osteocalcin concentration, carboxylation, and fragmentation were not associated with any measure of glucose homeostasis in multivariable-adjusted analyses. CONCLUSIONS: In CKD, circulating osteocalcin concentrations are elevated, in part due to larger proportions of fragmented forms. However, osteocalcin carboxylation status is not significantly different between individuals with and without CKD. Our data also do not provide support for the hypothesis that differences in osteocalcin carboxylation may explain reduced insulin sensitivity in individuals with CKD.


Subject(s)
Insulin Resistance , Renal Insufficiency, Chronic , Cross-Sectional Studies , Female , Glucose , Homeostasis , Humans , Osteocalcin , Renal Dialysis
2.
Arterioscler Thromb Vasc Biol ; 39(10): 2145-2156, 2019 10.
Article in English | MEDLINE | ID: mdl-31390883

ABSTRACT

OBJECTIVE: ApoC-III (apolipoprotein C-III) glycosylation can predict cardiovascular disease risk. Higher abundance of disialylated (apoC-III2) over monosialylated (apoC-III1) glycoforms is associated with lower plasma triglyceride levels. Yet, it remains unclear whether apoC-III glycosylation impacts TRL (triglyceride-rich lipoprotein) clearance and whether apoC-III antisense therapy (volanesorsen) affects distribution of apoC-III glycoforms. Approach and Results: To measure the abundance of human apoC-III glycoforms in plasma over time, human TRLs were injected into wild-type mice and mice lacking hepatic TRL clearance receptors, namely HSPGs (heparan sulfate proteoglycans) or both LDLR (low-density lipoprotein receptor) and LRP1 (LDLR-related protein 1). ApoC-III was more rapidly cleared in the absence of HSPG (t1/2=25.4 minutes) than in wild-type animals (t1/2=55.1 minutes). In contrast, deficiency of LDLR and LRP1 (t1/2=56.1 minutes) did not affect clearance of apoC-III. After injection, a significant increase in the relative abundance of apoC-III2 was observed in HSPG-deficient mice, whereas the opposite was observed in mice lacking LDLR and LRP1. In patients, abundance of plasma apoC-III glycoforms was assessed after placebo or volanesorsen administration. Volanesorsen treatment correlated with a statistically significant 1.4-fold increase in the relative abundance of apoC-III2 and a 15% decrease in that of apoC-III1. The decrease in relative apoC-III1 abundance was strongly correlated with decreased plasma triglyceride levels in patients. CONCLUSIONS: Our results indicate that HSPGs preferentially clear apoC-III2. In contrast, apoC-III1 is more effectively cleared by LDLR/LRP1. Clinically, the increase in the apoC-III2/apoC-III1 ratio on antisense lowering of apoC-III might reflect faster clearance of apoC-III1 because this metabolic shift associates with improved triglyceride levels.


Subject(s)
Apolipoprotein C-III/blood , Hypertriglyceridemia/drug therapy , Lipoproteins, HDL3/metabolism , Oligonucleotides/administration & dosage , Receptors, LDL/metabolism , Animals , Apolipoprotein C-III/drug effects , Disease Models, Animal , Glycosylation/drug effects , Humans , Hypertriglyceridemia/blood , Male , Mice , Molecular Targeted Therapy/methods , Receptors, LDL/drug effects , Reference Values
3.
Langmuir ; 34(40): 11925-11932, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30208711

ABSTRACT

Silicon oxide substrates underwent gas-phase functionalization with various aminosilanes, and the resulting surfaces were evaluated for their suitability as a solid support for solid phase peptide synthesis (SPPS). APTES (3-aminopropyltriethoxysilane), APDEMS (3-aminopropyldiethoxymethylsilane), and APDIPES (3-aminopropyldiisopropylethoxysilane) were individually applied to thermal oxide-terminated silicon substrates via gas-phase deposition. Coated surfaces were characterized by spectroscopic ellipsometry (SE), contact angle goniometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and spectrophotometry. Model oligopeptides with 16 residues were synthesized on the amino surfaces, and the chemical stabilities of the resulting surfaces were evaluated against a stringent side chain deprotection (SCD) step, which contained trifluoroacetic acid (TFA) and trifluoromethanesulfonic acid (TFMSA). Functionalized surface thickness loss during SCD was most acute for APDIPES and the observed relative stability order was APTES > APDEMS > APDIPES. Amino surfaces were evaluated for compatibility with stepwise peptide synthesis where complete deprotection and coupling cycles are paramount. Model trimer syntheses indicated that routine capping of unreacted amines with acetic anhydride significantly increased purity as measured by MALDI-MS. An inverse correlation between the amine loading density and peptide purity was observed. In general, peptide purity was highest for the lowest amine density APDIPES surface.

4.
J Lipid Res ; 57(5): 894-905, 2016 05.
Article in English | MEDLINE | ID: mdl-26945091

ABSTRACT

The apoC-III proteoform containing two sialic acid residues (apoC-III2) has different in vitro effects on lipid metabolism compared with asialylated (apoC-III0) or the most abundant monosialylated (apoC-III1) proteoforms. Cross-sectional and longitudinal associations between plasma apoC-III proteoforms (by mass spectrometric immunoassay) and plasma lipids were tested in two randomized clinical trials: ACT NOW, a study of pioglitazone in subjects with impaired glucose tolerance (n = 531), and RACED (n = 296), a study of intensive glycemic control and atherosclerosis in type 2 diabetes patients. At baseline, higher relative apoC-III2 and apoC-III2/apoC-III1 ratios were associated with lower triglycerides and total cholesterol in both cohorts, and with lower small dense LDL in the RACED. Longitudinally, changes in apoC-III2/apoC-III1 were inversely associated with changes in triglycerides in both cohorts, and with total and small dense LDL in the RACED. apoC-III2/apoC-III1 was also higher in patients treated with PPAR-γ agonists and was associated with reduced cardiovascular events in the RACED control group. Ex vivo studies of apoC-III complexes with higher apoC-III2/apoC-III1 showed attenuated inhibition of VLDL uptake by HepG2 cells and LPL-mediated lipolysis, providing possible functional explanations for the inverse association between a higher apoC-III2/apoC-III1 and hypertriglyceridemia, proatherogenic plasma lipid profiles, and cardiovascular risk.


Subject(s)
Apolipoprotein C-III/blood , Diabetes Mellitus, Type 2/blood , Prediabetic State/blood , Adolescent , Adult , Aged , Diabetes Mellitus, Type 2/drug therapy , Female , Glycosylation , Hep G2 Cells , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Male , Middle Aged , Obesity/blood , Pioglitazone , Prediabetic State/drug therapy , Protein Isoforms/blood , Protein Processing, Post-Translational , Randomized Controlled Trials as Topic , Sialic Acids/blood , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Treatment Outcome
5.
Proteome Sci ; 14: 7, 2016.
Article in English | MEDLINE | ID: mdl-27019641

ABSTRACT

BACKGROUND: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was to clarify the association of native CysC, CysC missing N-terminal Serine (CysC des-S), and CysC without three N-terminal residues (CysC des-SSP) with diabetic chronic kidney disease (CKD). RESULTS: Using mass spectrometric immunoassay, the plasma concentrations of native CysC and the two CysC truncation proteoforms were examined in 111 individuals from three groups: 33 non-diabetic controls, 34 participants with type 2 diabetes (DM) and without CKD and 44 participants with diabetic CKD. Native CysC concentrations were 1.4 fold greater in CKD compared to DM group (p = 0.02) and 1.5 fold greater in CKD compared to the control group (p = 0.001). CysC des-S concentrations were 1.55 fold greater in CKD compared to the DM group (p = 0.002) and 1.9 fold greater in CKD compared to the control group (p = 0.0002). CysC des-SSP concentrations were 1.8 fold greater in CKD compared to the DM group (p = 0.008) and 1.52 fold greater in CKD compared to the control group (p = 0.002). In addition, the concentrations of CysC proteoforms were greater in the setting of albuminuria. The truncated CysC proteoform concentrations were associated with estimated GFR independent of native CysC concentrations. CONCLUSION: Our findings demonstrate a greater amount of CysC proteoforms in diabetic CKD. We therefore suggest assessing the role of cystatin C proteoforms in the progression of CKD.

6.
Biomarkers ; 21(8): 743-751, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27308834

ABSTRACT

OBJECTIVE: Proteins can exist as multiple proteoforms in vivo that can have important roles in physiological and pathological states. METHODS: We present the development and characterization of mass spectrometric immunoassay (MSIA) for quantitative determination of serum amyloid A (SAA) proteoforms. RESULTS: Intra- and inter-day precision revealed CVs <10%. Against existing SAA ELISA, the developed MSIA showed good correlation according to the Altman-Bland plot. Individual concentrations of the SAA proteoforms across a cohort of 170 samples revealed 7 diverse SAA polymorphic types and 12 different proteoforms. CONCLUSION: The new SAA MSIA enables parallel analysis of SAA polymorphisms and quantification of all expressed SAA proteoforms, in a high-throughput and time-efficient manner.

7.
Methods ; 81: 86-92, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25752847

ABSTRACT

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.


Subject(s)
Apolipoprotein C-III/blood , Apolipoprotein C-II/blood , Apolipoprotein C-I/blood , Immunoassay/methods , Mass Spectrometry/methods , Apolipoprotein C-I/metabolism , Apolipoprotein C-II/metabolism , Apolipoprotein C-III/metabolism , Humans , Protein Isoforms/blood , Protein Isoforms/metabolism , Protein Processing, Post-Translational
8.
Proteome Sci ; 12(1): 52, 2014.
Article in English | MEDLINE | ID: mdl-25328446

ABSTRACT

BACKGROUND: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies. RESULTS: In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay. CONCLUSIONS: The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.

9.
Commun Biol ; 7(1): 979, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134636

ABSTRACT

Previous work has shown that binding of target proteins to a sparse, unbiased sample of all possible peptide sequences is sufficient to train a machine learning model that can then predict, with statistically high accuracy, target binding to any possible peptide sequence of similar length. Here, highly sequence-specific molecular recognition is explored by measuring binding of 8 monoclonal antibodies (mAbs) with specific linear cognate epitopes to an array containing 121,715 near-random sequences about 10 residues in length. Network models trained on resulting sequence-binding values are used to predict the binding of each mAb to its cognate sequence and to an in silico generated one million random sequences. The model always ranks the binding of the cognate sequence in the top 100 sequences, and for 6 of the 8 mAbs, the cognate sequence ranks in the top ten. Practically, this approach has potential utility in selecting highly specific mAbs for therapeutics or diagnostics. More fundamentally, this demonstrates that very sparse random sampling of a large amino acid sequence spaces is sufficient to generate comprehensive models predictive of highly specific molecular recognition.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Amino Acid Sequence , Machine Learning , Epitopes/immunology , Epitopes/chemistry , Humans , Protein Binding , Binding Sites, Antibody , Computer Simulation
10.
Proteomics ; 11(18): 3633-41, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21751365

ABSTRACT

Transthyretin (TTR, or prealbumin) is a tetrameric protein found in plasma and cerebrospinal fluid. Its major role is to transport thyroid hormones (thyroxin-T4) and retinol (through association with retinol-binding protein). TTR has been studied extensively due to the great number of point mutations that result in sequence heterogeneity. Many of these variants are associated with pathological conditions that result in extracellular deposition of amyloid fibers in tissues. In this work, we have developed a rapid mass spectrometric immunoassay for determination and quantification of TTR and its variants from human serum and plasma samples. The assay was fully characterized in terms of its precision, linearity and recovery characteristics. The new assay was also compared with a conventional TTR ELISA. Furthermore, we have applied the optimized method to analyze TTR and its modifications in 44 human plasma samples, and in the process optimized a method for TTR proteolytic digestion and identification of point mutations.


Subject(s)
Immunoassay/methods , Mass Spectrometry/methods , Prealbumin/chemistry , Blood Chemical Analysis/methods , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay/instrumentation , Mass Spectrometry/instrumentation , Point Mutation , Prealbumin/genetics , Sensitivity and Specificity
11.
Proteome Sci ; 9(1): 19, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21477312

ABSTRACT

BACKGROUND: Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants. RESULTS: Presented here is a mass spectrometric immunoassay method for targeted quantitative proteomics analysis of protein modifications. Cystatin C, a cysteine proteinase inhibitor and a potential marker for several pathological processes, was used as a target analyte. An internal reference standard was incorporated into the assay, serving as a normalization point for cystatin C quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing cystatin C ELISA. In application, the assay was utilized to determine the individual concentration of several cystatin C variants across a cohort of samples, demonstrating the ability to fully quantify individual forms of post-translationally modified proteins. CONCLUSIONS: The mass spectrometric immunoassays can find use in quantifying specific protein modifications, either as a part of a specific protein biomarker discovery/rediscovery effort to delineate the role of these variants in the onset of the disease, progression, and response to therapy, or in a more systematic study to delineate and understand human protein diversity.

12.
J Proteome Res ; 9(11): 5969-73, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20822186

ABSTRACT

Protein biomarkers are essential in assessing pathogenic processes. The impetus for finding new biomarkers has been accelerated by the arrival of the "omics" technologies. However, equally important is the rediscovery of existing biomarkers with these new approaches as novel variants can be discovered that can improve their utility. Presented here is a mass spectrometric immunoassay method for quantitative determination of ß-2-microglobulin, an established biomarker used in the diagnosis of active rheumatoid arthritis and kidney disease, and its structural variant, cleaved at and deficient in lysine-58 (ΔK58-b2m). ß-Lactoglobulin was incorporated into the assay as an internal reference standard, serving as normalization point for ß-2-microglobulin quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing ß-2-microglobulin ELISA. The assay was utilized to determine the individual concentration of ß-2-microglobulin and its variant across a larger cohort of samples, demonstrating the ability to simultaneously quantify both proteins.


Subject(s)
Immunoassay/methods , Mass Spectrometry/methods , Protein Isoforms/analysis , Arthritis, Rheumatoid/diagnosis , Biomarkers/analysis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay/standards , Kidney Diseases/diagnosis , Mass Spectrometry/standards , Reference Standards , Reproducibility of Results , beta 2-Microglobulin/analysis , beta 2-Microglobulin/standards
13.
J Clin Lipidol ; 11(1): 224-233.e2, 2017.
Article in English | MEDLINE | ID: mdl-28391889

ABSTRACT

BACKGROUND: The presence of small dense low-density lipoprotein (LDL) is associated with obesity, type II diabetes, and an increased risk for cardiovascular disease. Apolipoprotein C-III (apoC-III) is involved in the formation of small dense LDL, but the exact mechanisms are still not well defined. ApoC-III is a glycosylated apolipoprotein, with 3 major glycoforms: apoC-III0, apoC-III1, and apoC-III2 that contain 0, 1, or 2 molecules of sialic acid, respectively. In our previous work, we reported an association among apoC-III0 and apoC-III1, but not apoC-III2 with fasting plasma triglyceride levels in obesity and type II diabetes. OBJECTIVE: The goal of this study was to determine the relationship between changes in the major apoC-III glycoforms and small dense LDL levels after dietary interventions. METHODS: Mass spectrometric immunoassay was performed on fasting plasma samples from 61 subjects who underwent either a high-carbohydrate diet (n = 34) or a weight loss intervention (n = 27). RESULTS: After both dietary interventions, changes in total apoC-III concentrations were associated with changes in LDL peak particle diameter (r = -0.58, P < .0001). Increases in total apoC-III concentrations after the high-carbohydrate diet were associated with decreases in LDL size (r = -0.53, P = .001), and decreases in apoC-III concentrations after weight loss were associated with increases in LDL peak particle diameter (r = -0.54, P = .004). Changes in concentrations of apoC-III1 and apoC-III0, but not apoC-III2, were associated with changes in LDL peak particle diameter in both the weight loss and high-carbohydrate interventions. CONCLUSIONS: We conclude that apoC-III0 and apoC-III1, but not apoC-III2 are associated with the formation of small dense LDL.


Subject(s)
Apolipoprotein C-III/blood , Diet , Dietary Carbohydrates/pharmacology , Lipoproteins, LDL/blood , Lipoproteins, LDL/chemistry , Particle Size , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Phenotype , Weight Loss/drug effects
14.
Bioanalysis ; 8(15): 1623-1633, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27396364

ABSTRACT

Human proteins can exist as multiple proteoforms with potential diagnostic or prognostic significance. MS top-down approaches are ideally suited for proteoforms identification because there is no prerequisite for a priori knowledge of the specific proteoform. One such top-down approach, termed mass spectrometric immunoassay utilizes antibody-derivatized microcolumns for rapid and contained proteoforms isolation and detection via MALDI-TOF MS. The mass spectrometric immunoassay can also provide quantitative measurement of the proteoforms through inclusion of an internal reference standard into the analytical sample, serving as normalizer for all sample processing and data acquisition steps. Reviewed here are recent developments and results from the application of mass spectrometric immunoassays for discovery of clinical correlations of specific proteoforms for the protein biomarkers RANTES, retinol binding protein, serum amyloid A and apolipoprotein C-III.


Subject(s)
Chromatography, Affinity/methods , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Apolipoprotein C-III/analysis , Chemokine CCL5/analysis , Humans , Protein Isoforms/analysis , Retinol-Binding Proteins/analysis , Serum Amyloid A Protein/analysis
15.
Proteomes ; 4(1)2016 Mar 17.
Article in English | MEDLINE | ID: mdl-28248223

ABSTRACT

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.

16.
Clin Mass Spectrom ; 1: 27-31, 2016 Nov.
Article in English | MEDLINE | ID: mdl-36778895

ABSTRACT

Background: Cystatin C (CysC), a marker for chronic kidney disease, exists as three sequence proteoforms, in addition to the wild-type sequence: one contains hydroxyproline at position 3 (3Pro-OH), the two others have truncated sequences (des-S and des-SSP). Here, we examine correlations between each of these CysC proteoforms and estimated glomerular filtration rate (eGFR), a diagnostic criterion for chronic kidney disease (CKD). Methods: CysC proteoform concentrations were determined from the plasma of 297 diabetes patients at a baseline time point and nine-months later, using a mass spectrometric immunoassay, and were correlated with eGFR calculations. Results: In all samples, 3Pro-OH was the most abundant CysC proteoform, followed by the wild-type proteoform. Least abundant were the truncated CysC proteoforms, des-S and des-SSP, although they demonstrated stronger negative correlation with eGFR than the 3Pro-OH and wild-type proteoforms. The des-SSP truncated proteoform exhibited negative predictive value for eGFR. Conclusions: The truncated CysC proteoforms show potential for clinical and prognostic utility in CKD staging. This could be useful in populations where current methods do not provide satisfactory solutions.

17.
J Clin Lipidol ; 10(4): 808-815, 2016.
Article in English | MEDLINE | ID: mdl-27578111

ABSTRACT

BACKGROUND: Apolipoprotein A-II (apoA-II) is the second most abundant protein in high-density lipoprotein particles. However, it exists in plasma in multiple forms. The effect of diabetes on apoA-II proteoforms is not known. OBJECTIVE: Our objective was to characterize plasma apoA-II proteoforms in participants with and without type 2 diabetes. METHODS: Using a novel mass spectrometric immunoassay, the relative abundance of apoA-II proteoforms was examined in plasma of 30 participants with type 2 diabetes and 25 participants without diabetes. RESULTS: Six apoA-II proteoforms (monomer, truncated TQ monomer, truncated Q monomer, dimer, truncated Q dimer, and truncated 2Qs dimer) and their oxidized proteoforms were identified. The ratios of oxidized monomer and all oxidized proteoforms to the native apoA-II were significantly greater in the diabetic group (P = .004 and P = .005, respectively) compared with the nondiabetic group. CONCLUSION: The relative abundance of oxidized apoA-II is significantly increased in type 2 diabetes.


Subject(s)
Apolipoprotein A-II/blood , Apolipoprotein A-II/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Protein Processing, Post-Translational , Adult , Case-Control Studies , Female , Humans , Male
18.
J Proteomics ; 116: 15-23, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25549571

ABSTRACT

The chemokine RANTES plays a key role in inflammation, cell recruitment and T cell activation. RANTES is heterogenic and exists as multiple variants in vivo. Herein we describe the development and characterization of a fully quantitative mass spectrometric immunoassay (MSIA) for analysis of intact RANTES and its proteoforms in human serum and plasma samples. The assay exhibits linearity over a wide concentration range (1.56-200ng/mL), intra- and inter-assay precision with CVs <10%, and good linearity and recovery correlations. The assay was tested in different biological matrices, and it was benchmarked against an existing RANTES ELISA. The new RANTES MSIA was used to analyze RANTES and its proteoforms in a small clinical cohort, revealing the quantitative distribution and frequency of the native and truncated RANTES proteoforms. BIOLOGICAL SIGNIFICANCE: In the last two decades, RANTES has been studied extensively due to its association with numerous clinical conditions, including kidney-related, autoimmune, cardiovascular, viral and metabolic pathologies. Although a single gene product, RANTES is expressed in a range of cells and tissues presenting with different endogenously produced variants and PTMs. The structural variety and population diversity that has been identified for RANTES necessitate developing advanced methodologies that can provide insight into the protein heterogeneity and its function and regulation in disease. In this work we present a simple, efficient and high-throughput mass spectrometric immunoassay (MSIA) method for analysis of RANTES proteoforms. RANTES MSIA can detect and analyze RANTES proteoforms and provide an insight into the endogenous protein modifications.


Subject(s)
Chemokine CCL5/analysis , Mass Spectrometry/methods , Chemokine CCL5/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Humans , Protein Isoforms/analysis , Protein Isoforms/metabolism
19.
PLoS One ; 10(1): e0115320, 2015.
Article in English | MEDLINE | ID: mdl-25607823

ABSTRACT

METHODS: Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes. RESULTS: The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = -0.32, p<0.001) and triglyceride concentrations (r = -0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001). CONCLUSION: The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.


Subject(s)
Cholesterol, HDL/blood , Diabetes Mellitus, Type 2/blood , Serum Amyloid A Protein/metabolism , Adult , Aged , Aged, 80 and over , Arginine/metabolism , Female , Humans , Male , Middle Aged
20.
PLoS One ; 10(12): e0144138, 2015.
Article in English | MEDLINE | ID: mdl-26633899

ABSTRACT

INTRODUCTION: Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III0b with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations. METHODS: In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay. RESULTS: Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (Si). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms. CONCLUSION: We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC- III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.


Subject(s)
Apolipoprotein C-III/metabolism , Body Weight/physiology , Obesity/metabolism , Overweight/metabolism , Triglycerides/blood , Adolescent , Child , Female , Humans , Insulin Resistance/physiology , Lipid Metabolism/physiology , Male , Obesity/blood , Overweight/blood
SELECTION OF CITATIONS
SEARCH DETAIL