Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Hum Brain Mapp ; 45(12): e26809, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39185729

ABSTRACT

Entropy measures are increasingly being used to analyze the structure of neural activity observed by functional magnetic resonance imaging (fMRI), with resting-state networks (RSNs) being of interest for their reproducible descriptions of the brain's functional architecture. Temporal correlations have shown a dichotomy among these networks: those that engage with the environment, known as extrinsic, which include the visual and sensorimotor networks; and those associated with executive control and self-referencing, known as intrinsic, which include the default mode network and the frontoparietal control network. While these inter-voxel temporal correlations enable the assessment of synchrony among the components of individual networks, entropic measures introduce an intra-voxel assessment that quantifies signal features encoded within each blood oxygen level-dependent (BOLD) time series. As a result, this framework offers insights into comprehending the representation and processing of information within fMRI signals. Multiscale entropy (MSE) has been proposed as a useful measure for characterizing the entropy of neural activity across different temporal scales. This measure of temporal entropy in BOLD data is dependent on the length of the time series; thus, high-quality data with fine-grained temporal resolution and a sufficient number of time frames is needed to improve entropy precision. We apply MSE to the Midnight Scan Club, a highly sampled and well-characterized publicly available dataset, to analyze the entropy distribution of RSNs and evaluate its ability to distinguish between different functional networks. Entropy profiles are compared across temporal scales and RSNs. Our results have shown that the spatial distribution of entropy at infra-slow frequencies (0.005-0.1 Hz) reproduces known parcellations of RSNs. We found a complexity hierarchy between intrinsic and extrinsic RSNs, with intrinsic networks robustly exhibiting higher entropy than extrinsic networks. Finally, we found new evidence that the topography of entropy in the posterior cerebellum exhibits high levels of entropy comparable to that of intrinsic RSNs.


Subject(s)
Magnetic Resonance Imaging , Nerve Net , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Connectome/methods , Entropy , Brain/diagnostic imaging , Brain/physiology , Default Mode Network/diagnostic imaging , Default Mode Network/physiology , Adult , Rest/physiology
2.
Medicina (Kaunas) ; 60(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399619

ABSTRACT

Background and Objectives: Advances in virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies have resulted in their increased application across many medical specialties. VR's main application has been for teaching and preparatory roles, while AR has been mostly used as a surgical adjunct. The objective of this study is to discuss the various applications and prospects for VR, AR, and MR specifically as they relate to spine surgery. Materials and Methods: A systematic review was conducted to examine the current applications of VR, AR, and MR with a focus on spine surgery. A literature search of two electronic databases (PubMed and Scopus) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The study quality was assessed using the MERSQI score for educational research studies, QUACS for cadaveric studies, and the JBI critical appraisal tools for clinical studies. Results: A total of 228 articles were identified in the primary literature review. Following title/abstract screening and full-text review, 46 articles were included in the review. These articles comprised nine studies performed in artificial models, nine cadaveric studies, four clinical case studies, nineteen clinical case series, one clinical case-control study, and four clinical parallel control studies. Teaching applications utilizing holographic overlays are the most intensively studied aspect of AR/VR; the most simulated surgical procedure is pedicle screw placement. Conclusions: VR provides a reproducible and robust medium for surgical training through surgical simulations and for patient education through various platforms. Existing AR/MR platforms enhance the accuracy and precision of spine surgeries and show promise as a surgical adjunct.


Subject(s)
Augmented Reality , Spine , Virtual Reality , Humans , Patient Education as Topic/methods , Spine/surgery
3.
Medicina (Kaunas) ; 60(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399568

ABSTRACT

Background and Objectives: Augmented reality head-mounted display (AR-HMD) is a novel technology that provides surgeons with a real-time CT-guided 3-dimensional recapitulation of a patient's spinal anatomy. In this case series, we explore the use of AR-HMD alongside more traditional robotic assistance in surgical spine trauma cases to determine their effect on operative costs and perioperative outcomes. Materials and Methods: We retrospectively reviewed trauma patients who underwent pedicle screw placement surgery guided by AR-HMD or robotic-assisted platforms at an academic tertiary care center between 1 January 2021 and 31 December 2022. Outcome distributions were compared using the Mann-Whitney U test. Results: The AR cohort (n = 9) had a mean age of 66 years, BMI of 29.4 kg/m2, Charlson Comorbidity Index (CCI) of 4.1, and Surgical Invasiveness Index (SII) of 8.8. In total, 77 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 378 mL, 0.78 units transfused, 398 min spent in the operating room, and a 20-day LOS. The robotic cohort (n = 13) had a mean age of 56 years, BMI of 27.1 kg/m2, CCI of 3.8, and SII of 14.2. In total, 128 pedicle screws were placed in this cohort. Intra-operatively, there was a mean blood loss of 432 mL, 0.46 units transfused units used, 331 min spent in the operating room, and a 10.4-day LOS. No significant difference was found between the two cohorts in any outcome metrics. Conclusions: Although the need to address urgent spinal conditions poses a significant challenge to the implementation of innovative technologies in spine surgery, this study represents an initial effort to show that AR-HMD can yield comparable outcomes to traditional robotic surgical techniques. Moreover, it highlights the potential for AR-HMD to be readily integrated into Level 1 trauma centers without requiring extensive modifications or adjustments.


Subject(s)
Augmented Reality , Spinal Fusion , Surgery, Computer-Assisted , Humans , Aged , Middle Aged , Surgery, Computer-Assisted/methods , Retrospective Studies , Fluoroscopy/methods , Spinal Fusion/methods
4.
Phys Rev Lett ; 127(8): 081603, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477415

ABSTRACT

Even for holographic theories that obey boundary causality, the full bulk Lorentzian path integral includes metrics that violate this condition. This leads to the following puzzle: the commutator of two field theory operators at space-like-separated points on the boundary must vanish. However, if these points are causally related in a bulk metric, then the bulk calculation of the commutator will be nonzero. It would appear that the integral over all metrics of this commutator must vanish exactly for holography to hold. This is puzzling since it must also be true if the commutator is multiplied by any other operator. Upon a careful treatment of boundary conditions in holography, we show how the bulk path integral leads to a natural resolution of this puzzle.

5.
Global Spine J ; : 21925682241270100, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091072

ABSTRACT

STUDY DESIGN: Systematic Review. OBJECTIVES: To evaluate which cervical deformity correction technique between anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF) produces better clinical, radiographic, and operative outcomes. METHODS: We conducted a meta-analysis comparing studies involving ACDF and ACCF. Adult patients with either original or previously treated cervical spine deformities were included. Two independent reviewers categorized extracted data into clinical, radiographic, and operative outcomes, including complications. Clinical assessments included patient-reported outcomes; radiographic evaluations examined C2-C7 Cobb angle, T1 slope, T1-CL, C2-7 SVA, and graft stability. Surgical measures included surgery duration, blood loss, hospital stay, and complications. RESULTS: 26 studies (25727 patients) met inclusion criteria and were extracted. Of these, 14 studies (19077 patients) with low risk of bias were included in meta-analysis. ACDF and ACCF similarly improve clinical outcomes in terms of JOA and NDI, but ACDF is significantly better at achieving lower VAS neck scores. ACDF is also more advantageous for improving cervical lordosis and minimizing the incidence of graft complications. While there is no significant difference between approaches for most surgical complications, ACDF is favorable for reducing operative time, intraoperative blood loss, and length of hospital stay. CONCLUSIONS: While both techniques benefit cervical deformity patients, when both techniques are feasible, ACDF may be superior with respect to VAS neck scores, cervical lordosis, graft complications and certain perioperative outcomes. Further studies are recommended to address outcome variability and refine surgical approach selection.

6.
Oper Neurosurg (Hagerstown) ; 27(3): 316-321, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38531089

ABSTRACT

BACKGROUND AND OBJECTIVE: There are many surgical approaches for execution of a thoracic corpectomy. In cases of challenging deformity, traditional posterior approaches might not be sufficient to complete the resection of the vertebral body. In this technical note, we describe indications and technique for a transdural multilevel high thoracic corpectomy. METHODS: A 25-year-old man with a history of neurofibromatosis type 1 presented with instrumentation failure after a previous T1-T12 posterior spinal fusion, extensive laminectomy, and tumor resection. The patient presented with progressive back pain, had broad dural ectasia, and a progressive kyphotic rotational and anteriorly translated spinal deformity. To resect the medial-most aspect of the vertebral body, a bilateral extracavitary approach was attempted, but was found insufficient. A transdural approach was subsequently performed. A left paramedian durotomy was made, followed by generous arachnoid dissection, bilateral dentate ligament division, and T4 rootlet sacrifice to mobilize the spinal cord. A ventral durotomy was then made and the ventral dura was reflected over the spinal cord to protect it while drilling. The corpectomy was then completed. The ventral and dorsal durotomies were closed primarily and reinforced with fibrin glue and fibrin sealant patch. The corpectomy defect was filled with nonstructural autograft. RESULTS: The focal kyphosis was corrected with a combination of rod contouring, compression, and in situ bending. During the surgery, the patient had stable neuromonitoring data, and postoperatively had no neurological deficits. On follow-up until 1 year, the patient presented with no signs of cerebrospinal spinal leaks, no motor or sensory deficits, minimal incisional pain, and significantly improved posture. CONCLUSION: Complex high thoracic (T3-5) ventral pathology inaccessible via a bilateral extracavitary approach may be accessed via a transdural approach as opposed to an anterior/lateral transthoracic approach that requires mobilization of cardiovascular structures or scapula.


Subject(s)
Thoracic Vertebrae , Humans , Male , Adult , Thoracic Vertebrae/surgery , Thoracic Vertebrae/diagnostic imaging , Plastic Surgery Procedures/methods , Dura Mater/surgery , Spinal Fusion/methods , Laminectomy/methods , Neurofibromatosis 1/surgery , Neurofibromatosis 1/complications
7.
Spine J ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173914

ABSTRACT

BACKGROUND: The accurate and safe positioning of cervical pedicle screws is crucial. While augmented reality (AR) use in spine surgery has previously demonstrated clinical utility in the thoracolumbar spine, its technical feasibility in the cervical spine remains less explored. PURPOSE: The objective of this study was to assess the precision and safety of AR-assisted pedicle screw placement in the cervical spine. STUDY DESIGN: In this experimental study, 5 cadaveric cervical spine models were instrumented from C3 to C7 by 5 different spine surgeons. The navigation accuracy and clinical screw accuracy were evaluated. METHODS: Postprocedural CT scans were evaluated for clinical accuracy by 2 independent neuroradiologists using the Gertzbein-Robbins scale. Technical precision was assessed by calculating the angular trajectory (°) and linear screw tip (mm) deviations in the axial and sagittal planes from the virtual pedicle screw position as recorded by the AR-guided platform during the procedure compared to the actual pedicle screw position derived from postprocedural imaging. RESULTS: A total of forty-one pedicle screws were placed in 5 cervical cadavers, with each of the 5 surgeons navigating at least 7 screws. Gertzbein-Robbins grade of A or B was achieved in 100% of cases. The mean values for tip and trajectory errors in the axial and sagittal planes between the virtual versus actual position of the screws was less than 3 mm and 30°, respectively (p<.05). None of the cervical screws violated the cortex by more than 2 mm or displaced neurovascular structures. CONCLUSIONS: AR-assisted cervical pedicle screw placement in cadavers demonstrated clinical accuracy comparable to existing literature values for image-guided navigation methods for the cervical spine. CLINICAL SIGNIFICANCE: This study provides technical and clinical accuracy data that supports clinical trialing of AR-assisted subaxial cervical pedicle screw placement.

8.
Neurooncol Adv ; 5(1): vdad034, 2023.
Article in English | MEDLINE | ID: mdl-37152811

ABSTRACT

Background: Patients with glioblastoma (GBM) and high-grade glioma (HGG, World Health Organization [WHO] grade IV glioma) have a poor prognosis. Consequently, there is an unmet clinical need for accessible and noninvasively acquired predictive biomarkers of overall survival in patients. This study evaluated morphological changes in the brain separated from the tumor invasion site (ie, contralateral hemisphere). Specifically, we examined the prognostic value of widespread alterations of cortical thickness (CT) in GBM/HGG patients. Methods: We used FreeSurfer, applied with high-resolution T1-weighted MRI, to examine CT, evaluated prior to standard treatment with surgery and chemoradiation in patients (GBM/HGG, N = 162, mean age 61.3 years) and 127 healthy controls (HC; 61.9 years mean age). We then compared CT in patients to HC and studied patients' associated changes in CT as a potential biomarker of overall survival. Results: Compared to HC cases, patients had thinner gray matter in the contralesional hemisphere at the time of tumor diagnosis. patients had significant cortical thinning in parietal, temporal, and occipital lobes. Fourteen cortical parcels showed reduced CT, whereas in 5, it was thicker in patients' cases. Notably, CT in the contralesional hemisphere, various lobes, and parcels was predictive of overall survival. A machine learning classification algorithm showed that CT could differentiate short- and long-term survival patients with an accuracy of 83.3%. Conclusions: These findings identify previously unnoticed structural changes in the cortex located in the hemisphere contralateral to the primary tumor mass. Observed changes in CT may have prognostic value, which could influence care and treatment planning for individual patients.

9.
Neuroimage Clin ; 39: 103476, 2023.
Article in English | MEDLINE | ID: mdl-37453204

ABSTRACT

Glioblastoma, a highly aggressive form of brain tumor, is a brain-wide disease. We evaluated the impact of tumor burden on whole brain resting-state functional magnetic resonance imaging (rs-fMRI) activity. Specifically, we analyzed rs-fMRI signals in the temporal frequency domain in terms of the power-law exponent and fractional amplitude of low-frequency fluctuations (fALFF). We contrasted 189 patients with newly-diagnosed glioblastoma versus 189 age-matched healthy reference participants from an external dataset. The patient and reference datasets were matched for age and head motion. The principal finding was markedly flatter spectra and reduced grey matter fALFF in the patients as compared to the reference dataset. We posit that the whole-brain spectral change is attributable to global dysregulation of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain. Additionally, we observed that clinical comorbidities, in particular, seizures, and MGMT promoter methylation, were associated with flatter spectra. Notably, the degree of change in spectra was predictive of overall survival. Our findings suggest that frequency domain analysis of rs-fMRI activity provides prognostic information in glioblastoma patients and offers a means of noninvasively studying the effects of glioblastoma on the whole brain.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Brain Neoplasms/pathology
10.
Oper Neurosurg (Hagerstown) ; 25(5): 469-477, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37584482

ABSTRACT

BACKGROUND AND OBJECTIVE: Rapid design and production of patient-specific 3-dimensional-printed implants (3DPIs) present a novel opportunity to restore the biomechanically demanding integrity of the lumbopelvic junction. We present a unique case of a 61-year-old patient with severe neuropathic spinal arthropathy (Charcot spine) who initially underwent a T4-to-sacrum spinal fusion. Massive bone destruction led to dissociation of his upper body from his pelvis and legs. Reconstruction of the spinopelvic continuity was planned with the aid of a personalized lumbosacral 3DPI. METHOD: Using high-resolution computed tomography scans, the custom 3DPI was made using additive titanium manufacturing. The unique 3DPI consisted of (1) a sacral platform with iliac screws, (2) modular corpectomy device with rigid connection to the sacral platform, and (3) anterior plate connection with screws for proximal fixation. The procedures to obtain compassionate use Food and Drug Administration approval were followed. The patient underwent debridement of a chronically open wound before undertaking the 3-stage reconstructive procedure. The custom 3DPI and additional instrumentation were inserted as part of a salvage rebuilding procedure. RESULTS: The chronology of the rapid implementation of the personalized sacral 3DPI from decision, design, manufacturing, Food and Drug Administration approval, and surgical execution lasted 28 days. The prosthesis was positioned in the defect according to the expected anatomic planes and secured using a screw-rod system and a vascularized fibular bone strut graft. The prosthesis provided an ideal repair of the lumbosacral junction and pelvic ring by merging spinal pelvic fixation, posterior pelvic ring fixation, and anterior spinal column fixation. CONCLUSION: To the best of our knowledge, this is the first case of a multilevel lumbar, sacral, and sacropelvic neuropathic (Charcot) spine reconstruction using a 3DPI sacral prosthesis. As the prevalence of severe spine deformities continues to increase, adoption of 3DPIs is becoming more relevant to offer personalized treatment for complex deformities.


Subject(s)
Joint Diseases , Sacrum , United States , Humans , Middle Aged , Sacrum/diagnostic imaging , Sacrum/surgery , Titanium , Pelvis , Bone Screws
SELECTION OF CITATIONS
SEARCH DETAIL