Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 56(21): 14891-14903, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36102785

ABSTRACT

Food production environments in low- and middle-income countries (LMICs) are recognized as posing significant and increasing risks to antimicrobial resistance (AMR), one of the greatest threats to global public health and food security systems. In order to maximize and expedite action in mitigating AMR, the World Bank and AMR Global Leaders Group have recommended that AMR is integrated into wider sustainable development strategies. Thus, there is an urgent need for tools to support decision makers in unravelling the complex social and environmental factors driving AMR in LMIC food-producing environments and in demonstrating meaningful connectivity with other sustainable development issues. Here, we applied the Driver-Pressure-State-Impact-Response (DPSIR) conceptual framework to an aquaculture case study site in rural Bangladesh, through the analysis of distinct social, microbiological, and metagenomic data sets. We show how the DPSIR framework supports the integration of these diverse data sets, first to systematically characterize the complex network of societal drivers of AMR in these environments and second to delineate the connectivity between AMR and wider sustainable development issues. Our study illustrates the complexity and challenges of addressing AMR in rural aquaculture environments and supports efforts to implement global policy aimed at mitigating AMR in aquaculture and other rural LMIC food-producing environments.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Aquaculture , Rural Population , Global Health
2.
Nat Commun ; 14(1): 3322, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369644

ABSTRACT

There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Genomics , United Kingdom , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Exp Suppl ; 114: 43-69, 2022.
Article in English | MEDLINE | ID: mdl-35543998

ABSTRACT

The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.


Subject(s)
Microsporidia , Base Sequence , Evolution, Molecular , Genome, Fungal/genetics , Genomics , Microsporidia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL