Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nature ; 595(7869): 673-676, 2021 07.
Article in English | MEDLINE | ID: mdl-34321671

ABSTRACT

Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2-4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6-9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12-14. We found that the explosive behaviour of the water-alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10-4 millibar onto liquid sodium-potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.

2.
J Am Chem Soc ; 146(23): 16062-16075, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38802319

ABSTRACT

Liquid-jet photoemission spectroscopy (LJ-PES) allows for a direct probing of electronic structure in aqueous solutions. We show the applicability of the approach to biomolecules in a complex environment, exploring site-specific information on the interaction of adenosine triphosphate in the aqueous phase (ATP(aq)) with magnesium (Mg2+(aq)), highlighting the synergy brought about by the simultaneous analysis of different regions in the photoelectron spectrum. In particular, we demonstrate intermolecular Coulombic decay (ICD) spectroscopy as a new and powerful addition to the arsenal of techniques for biomolecular structure investigation. We apply LJ-PES assisted by electronic-structure calculations to study ATP(aq) solutions with and without dissolved Mg2+. Valence photoelectron data reveal spectral changes in the phosphate and adenine features of ATP(aq) due to interactions with the divalent cation. Chemical shifts in Mg 2p, Mg 2s, P 2p, and P 2s core-level spectra as a function of the Mg2+/ATP concentration ratio are correlated to the formation of [Mg(ATP) 2]6-(aq), [MgATP]2-(aq), and [Mg2ATP](aq) complexes, demonstrating the element sensitivity of the technique to Mg2+-phosphate interactions. The most direct probe of the intermolecular interactions between ATP(aq) and Mg2+(aq) is delivered by the emerging ICD electrons following ionization of Mg 1s electrons. ICD spectra are shown to sensitively probe ligand exchange in the Mg2+-ATP(aq) coordination environment. In addition, we report and compare P 2s data from ATP(aq) and adenosine mono- and diphosphate (AMP(aq) and ADP(aq), respectively) solutions, probing the electronic structure of the phosphate chain and the local environment of individual phosphate units in ATP(aq). Our results provide a comprehensive view of the electronic structure of ATP(aq) and Mg2+-ATP(aq) complexes relevant to phosphorylation and dephosphorylation reactions that are central to bioenergetics in living organisms.


Subject(s)
Adenosine Triphosphate , Magnesium , Photoelectron Spectroscopy , Magnesium/chemistry , Adenosine Triphosphate/chemistry
3.
Acc Chem Res ; 56(3): 215-223, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36695522

ABSTRACT

ConspectusPhotoelectron spectroscopy (PES) is a powerful tool for the investigation of liquid-vapor interfaces, with applications in many fields from environmental chemistry to fundamental physics. Among the aspects that have been addressed with PES is the question of how molecules and ions arrange and distribute themselves within the interface, that is, the first few nanometers into solution. This information is of crucial importance, for instance, for atmospheric chemistry, to determine which species are exposed in what concentration to the gas-phase environment. Other topics of interest include the surface propensity of surfactants, their tendency for orientation and self-assembly, as well as ion double layers beneath the liquid-vapor interface. The chemical specificity and surface sensitivity of PES make it in principle well suited for this endeavor. Ideally, one would want to access complete atomic-density distributions along the surface normal, which, however, is difficult to achieve experimentally for reasons to be outlined in this Account. A major complication is the lack of accurate information on electron transport and scattering properties, especially in the kinetic-energy regime below 100 eV, a pre-requisite to retrieving the depth information contained in photoelectron signals.In this Account, we discuss the measurement of the photoelectron angular distributions (PADs) as a way to obtain depth information. Photoelectrons scatter with a certain probability when moving through the bulk liquid before being expelled into a vacuum. Elastic scattering changes the electron direction without a change in the electron kinetic energy, in contrast to inelastic scattering. Random elastic-scattering events usually lead to a reduction of the measured anisotropy as compared to the initial, that is, nascent PAD. This effect that would be considered parasitic when attempting to retrieve information on photoionization dynamics from nascent liquid-phase PADs can be turned into a powerful tool to access information on elastic scattering, and hence probing depth, by measuring core-level PADs. Core-level PADs are relatively unaffected by effects other than elastic scattering, such as orbital character changes due to solvation. By comparing a molecule's gas-phase angular anisotropy, assumed to represent the nascent PAD, with its liquid-phase anisotropy, one can estimate the magnitude of elastic versus inelastic scattering experienced by photoelectrons on their way to the surface from the site at which they were generated. Scattering events increase with increasing depth into solution, and thus it is possible to correlate the observed reduction in angular anisotropy with the depth below the surface along the surface normal.We will showcase this approach for a few examples. In particular, our recent works on surfactant molecules demonstrated that one can indeed probe atomic distances within these molecules with a high sensitivity of ∼1 Šresolution along the surface normal. We were also able to show that the anisotropy reduction scales linearly with the distance along the surface normal within certain limits. The limits and prospects of this technique are discussed at the end, with a focus on possible future applications, including depth profiling at solid-vapor interfaces.

4.
Phys Rev Lett ; 132(20): 203002, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829076

ABSTRACT

Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy. We observe a characteristic redshift of the Auger spectrum caused by the Coulomb interaction with the charged environment. Our results are relevant for the interpretation of Auger spectra of extended systems like large molecules, clusters, liquids, and solids, in particular in high-intensity radiation fields which are nowadays routinely available, e.g., at x-ray free-electron laser facilities. The effect has been widely ignored in the literature so far, and some interpretations of Auger spectra from clusters might need to be revisited.

5.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829060

ABSTRACT

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

6.
Phys Chem Chem Phys ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963770

ABSTRACT

Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published.

7.
Phys Chem Chem Phys ; 26(21): 15519-15529, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752716

ABSTRACT

Individual fingerprints of different isomers of C3H3+ cations have been identified by studying photoionization, photoexcitation, and photofragmentation of C3H3+ near the carbon K-edge. The experiment was performed employing the photon-ion merged-beams technique at the photon-ion spectrometer at PETRA III (PIPE). This technique is a variant of near-edge X-ray absorption fine-structure spectroscopy, which is particularly sensitive to the 1s → π* excitation. The C3H3+ primary ions were generated by an electron cyclotron resonance ion source. C3Hn2+ product ions with n = 0, 1, 2, and 3 were observed for photon energies in the range of 279.0 eV to 295.2 eV. The experimental spectra are interpreted with the aid of theoretical calculations within the framework of time-dependent density functional theory. To this end, absorption spectra have been calculated for three different constitutional isomers of C3H3+. We find that our experimental approach offers a new possibility to study at the same time details of the electronic structure and of the geometry of molecular ions such as C3H3+.

8.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38747428

ABSTRACT

We present a combined experimental and theoretical investigation of the radiationless decay spectrum of an O 1s double core hole in liquid water. Our experiments were carried out using liquid-jet electron spectroscopy from cylindrical microjets of normal and deuterated water. The signal of the double-core-hole spectral fingerprints (hypersatellites) of liquid water is clearly identified, with an intensity ratio to Auger decay of singly charged O 1s of 0.0014(5). We observe a significant isotope effect between liquid H2O and D2O. For theoretical modeling, the Auger electron spectrum of the central water molecule in a water pentamer was calculated using an electronic-structure toolkit combined with molecular-dynamics simulations to capture the influence of molecular rearrangement within the ultrashort lifetime of the double core hole. We obtained the static and dynamic Auger spectra for H2O, (H2O)5, D2O, and (D2O)5, instantaneous Auger spectra at selected times after core-level ionization, and the symmetrized oxygen-hydrogen distance as a function of time after double core ionization for all four prototypical systems. We consider this observation of liquid-water double core holes as a new tool to study ultrafast nuclear dynamics.

9.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181353

ABSTRACT

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

10.
Phys Chem Chem Phys ; 25(33): 22538, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37555358

ABSTRACT

Correction for 'Photoelectron angular distributions as sensitive probes of surfactant layer structure at the liquid-vapor interface' by Rémi Dupuy et al., Phys. Chem. Chem. Phys., 2022, 24, 4796-4808, https://doi.org/10.1039/D1CP05621B.

11.
Phys Chem Chem Phys ; 25(37): 25603-25618, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721108

ABSTRACT

Near-edge X-ray absorption mass spectrometry (NEXAMS) around the nitrogen and oxygen K-edges was employed on gas-phase peptides to probe the electronic transitions related to their protonation sites, namely at basic side chains, the N-terminus and the amide oxygen. The experimental results are supported by replica exchange molecular dynamics and density-functional theory and restricted open-shell configuration with single calculations to attribute the transitions responsible for the experimentally observed resonances. We studied five tailor-made glycine-based pentapeptides, where we identified the signature of the protonation site of N-terminal proline, histidine, lysine and arginine, at 406 eV, corresponding to N 1s → σ*(NHx+) (x = 2 or 3) transitions, depending on the peptides. We compared the spectra of pentaglycine and triglycine to evaluate the sensitivity of NEXAMS to protomers. Separate resonances have been identified to distinguish two protomers in triglycine, the protonation site at the N-terminus at 406 eV and the protonation site at the amide oxygen characterized by a transition at 403.1 eV.


Subject(s)
Amides , Peptides , Electronics , Nitrilotriacetic Acid , Oxygen , Protein Subunits , X-Rays
12.
Phys Chem Chem Phys ; 25(37): 25711-25719, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721719

ABSTRACT

Interatomic Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process wherein an excited atom transfers its excess energy to a neighboring species leading to the ionization of the latter. In helium clusters, ICD can take place, for example, after simultaneous ionization and excitation of one helium atom within the cluster. After ICD, two helium ions are created and the system undergoes a Coulomb explosion. In this work, we investigate theoretically ICD in small helium clusters containing between two and seven atoms and compare our findings to two sets of coincidence measurements on clusters of different mean sizes. We provide a prediction on the lifetime of the excited dimer and show that ICD is faster for larger clusters. This is due to (i) the increased number of neighboring atoms (and therefore the number of decay channels) and (ii) the substantial decrease of the interatomic distances. In order to provide more details on the decay dynamics, we report on the kinetic-energy distributions of the helium ions. These distributions clearly show that the ions may undergo charge exchange with the neutral atoms within the cluster, such process is known as frustrated Coulomb explosion. The probability for these charge-exchange processes increases with the size of the clusters and is reflected in our calculated and measured kinetic-energy distributions. These distributions are therefore characteristics of the size distribution of small helium clusters.

13.
J Chem Phys ; 158(23)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37338030

ABSTRACT

We demonstrate liquid-jet photoelectron spectroscopy from a flatjet formed by the impingement of two micron-sized cylindrical jets of different aqueous solutions. Flatjets provide flexible experimental templates enabling unique liquid-phase experiments that would not be possible using single cylindrical liquid jets. One such possibility is to generate two co-flowing liquid-jet sheets with a common interface in vacuum, with each surface facing the vacuum being representative of one of the solutions, allowing face-sensitive detection by photoelectron spectroscopy. The impingement of two cylindrical jets also enables the application of different bias potentials to each jet with the principal possibility to generate a potential gradient between the two solution phases. This is shown for the case of a flatjet composed of a sodium iodide aqueous solution and neat liquid water. The implications of asymmetric biasing for flatjet photoelectron spectroscopy are discussed. The first photoemission spectra for a sandwich-type flatjet comprised of a water layer encapsulated by two outer layers of an organic solvent (toluene) are also shown.

14.
Phys Rev Lett ; 129(24): 245001, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563261

ABSTRACT

One of the most enduring and intensively studied problems of x-ray astronomy is the disagreement of state-of-the art theory and observations for the intensity ratio of two Fe XVII transitions of crucial value for plasma diagnostics, dubbed 3C and 3D. We unravel this conundrum at the PETRA III synchrotron facility by increasing the resolving power 2.5 times and the signal-to-noise ratio thousandfold compared with our previous work. The Lorentzian wings had hitherto been indistinguishable from the background and were thus not modeled, resulting in a biased line-strength estimation. The present experimental oscillator-strength ratio R_{exp}=f_{3C}/f_{3D}=3.51(2)_{stat}(7)_{sys} agrees with our state-of-the-art calculation of R_{th}=3.55(2), as well as with some previous theoretical predictions. To further rule out any uncertainties associated with the measured ratio, we also determined the individual natural linewidths and oscillator strengths of 3C and 3D transitions, which also agree well with the theory. This finally resolves the decades-old mystery of Fe XVII oscillator strengths.

15.
Phys Chem Chem Phys ; 24(3): 1310-1325, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34604895

ABSTRACT

Recent advancement in quantitative liquid-jet photoelectron spectroscopy enables the accurate determination of the absolute-scale electronic energetics of liquids and species in solution. The major objective of the present work is the determination of the absolute lowest-ionization energy of liquid water, corresponding to the 1b1 orbital electron liberation, which is found to vary upon solute addition, and depends on the solute concentration. We discuss two prototypical aqueous salt solutions, NaI(aq) and tetrabutylammonium iodide, TBAI(aq), with the latter being a strong surfactant. Our results reveal considerably different behavior of the liquid water 1b1 binding energy in each case. In the NaI(aq) solutions, the 1b1 energy increases by about 0.3 eV upon increasing the salt concentration from very dilute to near-saturation concentrations, whereas for TBAI the energy decreases by about 0.7 eV upon formation of a TBAI surface layer. The photoelectron spectra also allow us to quantify the solute-induced effects on the solute binding energies, as inferred from concentration-dependent energy shifts of the I- 5p binding energy. For NaI(aq), an almost identical I- 5p shift is found as for the water 1b1 binding energy, with a larger shift occurring in the opposite direction for the TBAI(aq) solution. We show that the evolution of the water 1b1 energy in the NaI(aq) solutions can be primarily assigned to a change of water's electronic structure in the solution bulk. In contrast, apparent changes of the 1b1 energy for TBAI(aq) solutions can be related to changes of the solution work function which could arise from surface molecular dipoles. Furthermore, for both of the solutions studied here, the measured water 1b1 binding energies can be correlated with the extensive solution molecular structure changes occurring at high salt concentrations, where in the case of NaI(aq), too few water molecules exist to hydrate individual ions and the solution adopts a crystalline-like phase. We also comment on the concentration-dependent shape of the second, 3a1 orbital liquid water ionization feature which is a sensitive signature of water-water hydrogen bond interactions.

16.
Phys Chem Chem Phys ; 24(22): 13597-13604, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35621377

ABSTRACT

We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree-Fock calculations.

17.
Phys Chem Chem Phys ; 24(8): 4796-4808, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156668

ABSTRACT

The characterization of liquid-vapor interfaces at the molecular level is an important underpinning for a basic understanding of fundamental heterogeneous processes in many areas, such as atmospheric science. Here we use X-ray photoelectron spectroscopy to study the adsorption of a model surfactant, octanoic acid, at the water-gas interface. In particular, we examine the information contained in photoelectron angular distributions and show that information about the relative depth of molecules and functional groups within molecules can be obtained from these measurements. Focusing on the relative location of carboxylate (COO-) and carboxylic acid (COOH) groups at different solution pH, the former is found to be immersed deeper into the liquid-vapor interface, which is confirmed by classical molecular dynamics simulations. These results help establish photoelectron angular distributions as a sensitive tool for the characterization of molecules at the liquid-vapor interface.

18.
Phys Chem Chem Phys ; 24(15): 8661-8671, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35356960

ABSTRACT

Non-local analogues of Auger decay are increasingly recognized as important relaxation processes in the condensed phase. Here, we explore non-local autoionization, specifically Intermolecular Coulombic Decay (ICD), of a series of aqueous-phase isoelectronic cations following 1s core-level ionization. In particular, we focus on Na+, Mg2+, and Al3+ ions. We unambiguously identify the ICD contribution to the K-edge Auger spectrum. The different strength of the ion-water interactions is manifested by varying intensities of the respective signals: the ICD signal intensity is greatest for the Al3+ case, weaker for Mg2+, and absent for weakly-solvent-bound Na+. With the assistance of ab initio calculations and molecular dynamics simulations, we provide a microscopic understanding of the non-local decay processes. We assign the ICD signals to decay processes ending in two-hole states, delocalized between the central ion and neighbouring water. Importantly, these processes are shown to be highly selective with respect to the promoted water solvent ionization channels. Furthermore, using a core-hole-clock analysis, the associated ICD timescales are estimated to be around 76 fs for Mg2+ and 34 fs for Al3+. Building on these results, we argue that Auger and ICD spectroscopy represents a unique tool for the exploration of intra- and inter-molecular structure in the liquid phase, simultaneously providing both structural and electronic information.

19.
Phys Chem Chem Phys ; 24(38): 23119-23127, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36056691

ABSTRACT

We report the X-ray absorption of isolated H3O+ cations at the O 1s edge. The molecular ions were prepared in a flowing afterglow ion source which was designed for the production of small water clusters, protonated water clusters, and hydrated ions. Isolated H2O+ cations have been analyzed for comparison. The spectra show significant differences in resonance energies and widths compared to neutral H2O with resonances shifting to higher energies by as much as 10 eV and resonance widths increasing by as much as a factor of 5. The experimental results are supported by time-dependent density functional theory calculations performed for both molecular cations, showing a good agreement with the experimental data. The spectra reported here could enable the identification of the individual molecules in charged small water clusters or liquid water using X-ray absorption spectroscopy.

20.
Phys Chem Chem Phys ; 24(14): 8081-8092, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35253025

ABSTRACT

We present an experimental X-ray photoelectron circular dichroism (PECD) study of liquid fenchone at the C 1s edge. A novel setup to enable PECD measurements on a liquid microjet [Malerz et al., Rev. Sci. Instrum., 2022, 93, 015101] was used. For the C 1s line assigned to fenchone's carbonyl carbon, a non-vanishing asymmetry is found in the intensity of photoelectron spectra acquired under a fixed angle in the backward-scattering plane. This experiment paves the way towards an innovative probe of the chirality of organic/biological molecules in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL