Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Publication year range
1.
Cell ; 169(4): 587-596, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475891

ABSTRACT

The phytobiome is composed of plants, their environment, and diverse interacting microscopic and macroscopic organisms, which together influence plant health and productivity. These organisms form complex networks that are established and regulated through nutrient cycling, competition, antagonism, and chemical communication mediated by a diverse array of signaling molecules. Integration of knowledge of signaling mechanisms with that of phytobiome members and their networks will lead to a new understanding of the fate and significance of these signals at the ecosystem level. Such an understanding could lead to new biological, chemical, and breeding strategies to improve crop health and productivity.


Subject(s)
Ecosystem , Plants/microbiology , Animals , Arthropods/physiology , Eukaryota/physiology , Nematoda/physiology , Plant Physiological Phenomena , Signal Transduction
2.
Nature ; 610(7933): 693-698, 2022 10.
Article in English | MEDLINE | ID: mdl-36224389

ABSTRACT

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Subject(s)
Biodiversity , Conservation of Natural Resources , Geographic Mapping , Soil Microbiology , Soil , Animals , Conservation of Natural Resources/methods , Soil/parasitology , Invertebrates , Archaea
3.
Blood ; 143(5): 429-443, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37847858

ABSTRACT

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Humans , Antagomirs , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Hodgkin Disease/complications , Ligands , Lymphoma, Large B-Cell, Diffuse/metabolism , MicroRNAs/genetics , Viral Proteins/metabolism
4.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031813

ABSTRACT

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Subject(s)
Crops, Agricultural , Microbiota , Rhizosphere , Soil Microbiology , Crops, Agricultural/microbiology , Soil/chemistry , Fungi/physiology , Animals , Bacteria/classification , Bacteria/isolation & purification , Invertebrates/microbiology , Invertebrates/physiology
5.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Article in English | MEDLINE | ID: mdl-38804108

ABSTRACT

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Subject(s)
Embryophyta , Microbiota , Soil Microbiology , Biodiversity , Soil/chemistry
6.
Environ Microbiol ; 25(2): 229-240, 2023 02.
Article in English | MEDLINE | ID: mdl-36482161

ABSTRACT

The importance of host-associated microorganisms and their biotic interactions for plant health and performance has been increasingly acknowledged. Protists, main predators and regulators of bacteria and fungi, are abundant and ubiquitous eukaryotes in terrestrial ecosystems. Protists are considered to benefit plant health and performance, but the community structure and functions of plant-associated protists remain surprisingly underexplored. Harnessing plant-associated protists and other microbes can potentially enhance plant health and productivity and sustain healthy food and agriculture systems. In this review, we summarize the knowledge of multifunctionality of protists and their interactions with other microbes in plant hosts, and propose a future framework to study plant-associated protists and utilize protists as agrifood tools for benefiting agricultural production.


Subject(s)
Ecosystem , Eukaryota , Plants , Fungi/genetics , Agriculture , Soil Microbiology
7.
Glob Chang Biol ; 29(22): 6276-6285, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37578170

ABSTRACT

The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.

8.
Physiol Plant ; 175(2): e13909, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37026423

ABSTRACT

Pathogenesis-related (PR) signaling plays multiple roles in plant development under abiotic and biotic stress conditions and is regulated by a plethora of plant physiological as well as external factors. Here, our study was conducted to evaluate the role of an ACC deaminase-producing endophytic bacteria in regulating ethylene-induced PR signaling in red pepper plants under salt stress. We also evaluated the efficiency of the bacteria in down-regulating the PR signaling for efficient colonization and persistence in the plant endosphere. We used a characteristic endophyte, Methylobacterium oryzae CBMB20 and its ACC deaminase knockdown mutant (acdS- ). The wild-type M. oryzae CBMB20 was able to decrease ethylene emission by 23% compared to the noninoculated and acdS- M. oryzae CBMB20 inoculated plants under salt stress. The increase in ethylene emission resulted in enhanced hydrogen peroxide concentration, phenylalanine ammonia-lyase activity, ß-1,3 glucanase activity, and expression profiles of WRKY, CaPR1, and CaPTI1 genes that are typical salt stress and PR signaling factors. Furthermore, the inoculation of both the bacterial strains had shown induction of PR signaling under normal conditions during the initial inoculation period. However, wild-type M. oryzae CBMB20 was able to down-regulate the ethylene-induced PR signaling under salt stress and enhance plant growth and stress tolerance. Collectively, ACC deaminase-producing endophytic bacteria down-regulate the salt stress-mediated PR signaling in plants by regulating the stress ethylene emission levels and this suggests a new paradigm in efficient colonization and persistence of ACC deaminase-producing endophytic bacteria for better plant growth and productivity.


Subject(s)
Capsicum , Capsicum/metabolism , Salt Stress , Ethylenes/metabolism , Bacteria/metabolism
9.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902032

ABSTRACT

Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.


Subject(s)
Kidney Neoplasms , Prostatic Neoplasms , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Male , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Prostatic Neoplasms/genetics , Urinary Bladder Neoplasms/genetics , Kidney Neoplasms/genetics
10.
Environ Microbiol ; 24(8): 3722-3734, 2022 08.
Article in English | MEDLINE | ID: mdl-35582745

ABSTRACT

The frequency and severity of drought are increasing due to anthropogenic climate change and are already limiting cropping system productivity in many regions around the world. Few microbial groups within plant microbiomes can potentially contribute towards the fitness and productivity of their hosts under abiotic stress events including water deficits. However, microbial communities are complex and integrative work considering the multiple co-existing groups of organisms is needed to better understand how the entire microbiome responds to environmental stresses. We hypothesize that water deficit stress will differentially shape bacterial, fungal, and protistan microbiome composition and influence inter-kingdom microbial interactions in the rhizospheres of corn and sugar beet. We used amplicon sequencing to profile bacterial, fungal, and protistan communities in corn and sugar beet rhizospheres grown under irrigated and water deficit conditions. The water deficit treatment had a stronger influence than host species on bacterial composition, whereas the opposite was true for protists. These results indicate that different microbial kingdoms have variable responses to environmental stress and host factors. Water deficit also influenced intra- and inter-kingdom microbial associations, wherein the protist taxa formed a separate cluster under water deficit conditions. Our findings help elucidate the influence of environmental and host drivers of bacterial, fungal, and protistan community assembly and co-occurrence in agricultural rhizosphere environments.


Subject(s)
Microbiota , Rhizosphere , Bacteria/genetics , Microbiota/genetics , Plants , Soil Microbiology , Sugars , Water , Zea mays/microbiology
11.
Environ Microbiol ; 24(8): 3612-3624, 2022 08.
Article in English | MEDLINE | ID: mdl-35191581

ABSTRACT

The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt-stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt-stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt-stressed plants, bacteria-inoculated plants under normal and salt stress conditions respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. However, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt-induced apoptosis and sustaining growth and development.


Subject(s)
Oryza , Antioxidants/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Ethylenes/metabolism , Oryza/microbiology , Proteomics , Salt Stress , Stress, Physiological
12.
Environ Microbiol ; 24(10): 4652-4669, 2022 10.
Article in English | MEDLINE | ID: mdl-36059126

ABSTRACT

Plant core microbiomes consist of persistent key members that provide critical host functions, but their assemblages can be interrupted by biotic and abiotic stresses. The pathobiome is comprised of dynamic microbial interactions in response to disease status of the host. Hence, identifying variation in the core microbiome and pathobiome can significantly advance our understanding of microbial-microbial interactions and consequences for disease progression and host functions. In this study, we combined glasshouse and field studies to analyse the soil and plant rhizosphere microbiome of cotton plants (Gossypium hirsutum) in the presence of a cotton-specific fungal pathogen, Fusarium oxysporum f. sp. vasinfectum (FOV). We found that FOV directly and consistently altered the rhizosphere microbiome, but the biocontrol agents enabled microbial assemblages to resist pathogenic stress. Using co-occurrence network analysis of the core microbiome, we identified the pathobiome comprised of the pathogen and key associate phylotypes in the cotton microbiome. Isolation and application of some negatively correlated pathobiome members provided protection against plant infection. Importantly, our field survey from multiple cotton fields validated the pattern and responses of core microbiomes under FOV infection. This study advances key understanding of core microbiome responses and existence of plant pathobiomes, which provides a novel framework to better manage plant diseases in agriculture and natural settings.


Subject(s)
Fusarium , Microbiota , Fusarium/genetics , Gossypium/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Soil
13.
New Phytol ; 234(6): 1951-1959, 2022 06.
Article in English | MEDLINE | ID: mdl-35118660

ABSTRACT

Climate change is increasing global temperatures and the frequency and severity of droughts in many regions. These anthropogenic stresses pose a significant threat to plant performance and crop production. The plant-associated microbiome modulates the impacts of biotic and abiotic stresses on plant fitness. However, climate change-induced alteration in composition and activities of plant microbiomes can affect host functions. Here, we highlight recent advancements in our understanding of the impact of climate change (warming and drought) on plant-microbiome interactions and on their ecological functions from genome to ecosystem scales. We identify knowledge gaps, propose new concepts and make recommendations for future research directions. It is proposed that in the short term (years to decades), the adaptation of plants to climate change is mainly driven by the plant microbiome, whereas in the long term (century to millennia), the adaptation of plants will be driven equally by eco-evolutionary interactions between the plant microbiome and its host. A better understanding of the response of the plant and its microbiome interactions to climate change and the ways in which microbiomes can mitigate the negative impacts will better inform predictions of climate change impacts on primary productivity and aid in developing management and policy tools to improve the resilience of plant systems.


Subject(s)
Ecosystem , Microbiota , Climate Change , Droughts , Plants/genetics , Stress, Physiological/physiology
14.
Scand J Immunol ; 95(2): e13123, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34865261

ABSTRACT

The evaluation of anti-dsDNA antibodies represents one of the essential diagnostic and prognostic marker features in patients affected by Systemic Lupus Erythematosus (SLE). In this study, we have compared immunoblotting (IB) with Crithidia luciliae indirect immunofluorescence test (CLIFT) and chemiluminescent immunoassay (CLIA) in 91 patients referred to our hospital for anti-dsDNA antibodies detection. The concordance and correlation measured by Cohen's kappa and Spearman's coefficient respectively was significant between CLIFT and CLIA (0.70; 0,7404, P < .0001) and among CLIA and IB (0.79; 0,5377, P < 0,0001) and lower between CLIFT and IB (0.55; 0,4373, P  <0,0001). Among the 46 IB-positive samples, 14 were positive for either CLIA or CLIFT. It is noteworthy that 11 out of these 14 samples had the final diagnosis of SLE. Thirteen out of fourteen samples were also positive for anti-nucleosome antibodies as measured concomitantly in immunoblotting. While our observations are based on a limited number of samples and will have to be confirmed in a bigger cohort, they underline the contribution of immunoblotting as an additional assay in defining the anti-dsDNA antibody profile in association with other well-established methods such as CLIA and CLIFT.


Subject(s)
Antibodies, Antinuclear/blood , Fluorescent Antibody Technique, Indirect/methods , Immunoblotting/methods , Luminescent Measurements/methods , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies
15.
Phytopathology ; 112(1): 173-179, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34524882

ABSTRACT

Huanglongbing (HLB), or citrus greening disease, has significantly decreased citrus production all over the world. The disease management currently depends on the efficient application and adequate distribution of insecticides to reduce the density of the disease vector, the Asian citrus psyllid. Here, we use a novel fluorescent-based method to evaluate insecticide distribution in an HLB-infected citrus grove in Florida. Specifically, we evaluated six different locations within citrus trees, the top and bottom sides of leaves, the effect of application approach (tractor versus airplane), and different application rates. We found that despite the insecticide distribution being highly variable among the different locations within a tree, the top of the leaves received an average increase of 21 times more than the bottom of the leaves. Application by tractor also resulted in a 4- to 87-fold increase in insecticide coverage compared with aerial application, depending on the location in the tree and side of the leaf. When taken to context with the type of insecticide that is applied (systemic vs. contact), these results can be used to optimize a pest management strategy to effectively target psyllids and other pests while minimizing the time and money spent on insecticide application and reducing risk to the environment.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Fluorescence , Pest Control , Plant Diseases
16.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012375

ABSTRACT

It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared to type III latency BL cells. The other interesting finding of this study was that the inhibition of IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive B-cell lymphomas such as BL and PEL.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Poly(ADP-ribose) Polymerase Inhibitors , Unfolded Protein Response , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/virology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epstein-Barr Virus Infections/drug therapy , Herpesvirus 4, Human/physiology , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
17.
Environ Microbiol ; 23(4): 2169-2183, 2021 04.
Article in English | MEDLINE | ID: mdl-33400366

ABSTRACT

Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant-soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.


Subject(s)
Microbiota , Parasites , Animals , Fertilization , Rhizosphere , Soil , Soil Microbiology
18.
New Phytol ; 230(6): 2129-2147, 2021 06.
Article in English | MEDLINE | ID: mdl-33657660

ABSTRACT

Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.


Subject(s)
Agriculture , Microbiota , Plants
19.
Environ Microbiol ; 22(2): 564-567, 2020 02.
Article in English | MEDLINE | ID: mdl-31849163

ABSTRACT

Host microbiomes play a critical role in host fitness and health. Whilst the current 'holobiont' concept framework has greatly expanded eco-evolutionary and functional understanding of host-microbiome interactions, the important role of biotic interactions and microbial loop (compositional linkage between soil, plant and animal) in shaping host-microbiome are poorly understood. We proposed an 'eco-holobiont' concept to fill the knowledge gap.


Subject(s)
Microbiota/physiology , Symbiosis/physiology , Animals , Biological Evolution , Humans , Plants
20.
J Virol ; 93(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30429351

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.


Subject(s)
Argonaute Proteins/metabolism , Epstein-Barr Virus Infections/genetics , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/isolation & purification , Lymphoma, Large B-Cell, Diffuse/genetics , MicroRNAs/genetics , Argonaute Proteins/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , High-Throughput Nucleotide Sequencing , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/virology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL