Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 182(4): 919-932.e19, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32763156

ABSTRACT

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.


Subject(s)
Biofilms/growth & development , DNA/chemistry , Pseudomonas aeruginosa/physiology , Pyocyanine/chemistry , DNA/metabolism , Electrochemical Techniques , Electrodes , Electron Transport/drug effects , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Phenazines/chemistry , Phenazines/metabolism , Phenazines/pharmacology , Pyocyanine/metabolism
2.
J Am Chem Soc ; 146(22): 15275-15285, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785195

ABSTRACT

Adipic acid (AA) is an important feedstock for nylon polymers and is industrially produced from fossil-derived aromatics via thermocatalysis. However, this process consumes explosive H2 and corrosive HNO3 as reductants and oxidants, respectively. Here, we report the direct synthesis of AA from lignin-derived phenolic compounds via paired electrolysis using bimetallic cooperative catalysts. At the cathode, phenol is hydrogenated on PtAu catalysts to form ketone-alcohol (KA) oil with 92% yield and 43% Faradaic efficiency (FE). At the anode, KA is electrooxidized into AA on CuCo2O4 catalysts, achieving a maximum of 85% yield and 84% FE. Experimental and theoretical studies reveal that the excellent catalytic activity can be ascribed to the enhanced absorption and activation capability of reactants on the bimetallic cooperative catalysts. A two-electrode flow electrolyzer for AA synthesis realizes a stable electrolysis at 2.5 A for over 200 h as well as 38.5% yield and 70.2% selectivity. This study offers a green and sustainable route for AA synthesis from lignin via paired electrolysis.

3.
Anal Chem ; 96(2): 685-693, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38099807

ABSTRACT

Although APEX2-mediated proximity labeling has been extensively implemented for studying RNA subcellular localization in live cells, the biotin-phenoxyl radical used for labeling RNAs has a relatively low efficiency, which can limit its compatibility with other profiling methods. Herein, a set of phenol derivatives were designed as APEX2 probes through balancing reactivity, hydrophilicity, and lipophilicity. Among these derivatives, Ph_N3 exhibited reliable labeling ability and enabled two biotinylation routes for downstream analysis. As a proof of concept, we used APEX2/Ph_N3 labeling with high-throughput sequencing analysis to examine the transcriptomes in the mitochondrial matrix, demonstrating high sensitivity and specificity. To further expand the utility of Ph_N3, we employed mechanistically orthogonal APEX2 and singlet oxygen (1O2)-mediated strategies for dual location labeling in live cells. Specifically, DRAQ5, a DNA-intercalating photosensitizer, was applied for nucleus-restricted 1O2 labeling. We validated the orthogonality of APEX2/Ph_N3 and DRAQ5-1O2 at the imaging level, providing an attractive and feasible approach for future studies of RNA translocation in live cells.


Subject(s)
RNA , Transcriptome
4.
Small ; 20(11): e2306311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936311

ABSTRACT

Electrocatalytic nitrate reduction reaction (NO3 RR) is a promising approach for converting nitrate into environmentally benign or even value-added products such as ammonia (NH3 ) using renewable electricity. However, the poor understanding of the catalytic mechanism on metal-based surface catalysts hinders the development of high-performance NO3 RR catalysts. In this study, the NO3 RR mechanism of single-atom catalysts (SACs) is systematically explored by constructing single transition metal atoms supported on MXene with oxygen vacancies (Ov -MXene) using density functional theory (DFT) calculations. The results indicate that Ag/Ov -MXene (for precious metal) and Cu/Ov -MXene (for non-precious metal) are highly efficient SACs for NO3 RR toward NH3 , with low limiting potentials of -0.24 and -0.34 V, respectively. Furthermore, these catalysts show excellent selectivity toward ammonia due to the high energy barriers associated to the formation of byproducts such as NO2 , NO, N2 O, and N2 on Ag/Ov -MXene and Cu/Ov -MXene, effectively suppressing the competitive hydrogen evolution reaction (HER). The findings not only offer new strategies for promoting NH3 production by MXene-based SACs electrocatalysts under ambient conditions but also provide insights for the development of next-generation NO3 RR electrocatalysts.

5.
J Am Chem Soc ; 145(49): 26678-26687, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38051561

ABSTRACT

Nitrate electroreduction (NO3RR) holds promise as an energy-efficient strategy for the removal of toxic nitrate to restore the natural nitrogen cycle and mitigate the adverse impacts caused by overfertilization from suboptimal agricultural practices. However, existing catalysts suffer from limited electrocatalytic activity, poor selectivity, inadequate durability, and low scalability. To address this quadrilemma, in this study, we developed a cost-effective layered double hydroxide (LDH) electrocatalyst with a lamellar structure that presents trimetallic CuCoAl active sites on the nanomaterial surface. This codoping design enabled electrochemical upcycling of nitrate into ammonia exclusively and efficiently with an onset potential at 0 V vs RHE, where the electrocatalytic process is less energy intensive and has a lower carbon footprint than conventional practices. The synergistic interaction among Cu, Co, and Al further afforded a 99.5% Faradic efficiency (FE) and a yield rate of 0.22 mol h-1 g-1 for nitrate-to-ammonia electroreduction, surpassing the performance of state-of-the-art nonprecious metal NO3RR electrocatalysts over an extended operation period. To gain insights into the origin of the catalytic performance observed on LDH, control materials were employed to elucidate the roles of Cu and Co. Cu was found to improve the NO3RR onset potential despite displaying limited FE for ammonia synthesis, while Co was discovered to suppress the formation of nitrite byproduct though requiring large overpotential. Simulated wastewater containing phosphate and sulfate, which are typically present in industrial effluents, was used to further investigate the effect of electrolytes on NO3RR. Intriguingly, the use of phosphate buffer resulted in a superior yield rate and FE for ammonia production while simultaneously inhibiting nitrite byproduct formation compared with the sulfate case. These experimental findings were supported by density functional theory (DFT) calculations, which explored the adsorption strength of nitrate adducts adjacent to coadsorbed electrolytes on the LDH surface. Additionally, the relative free energies of NO3RR species were also computed to examine the proton-coupled electron transfer (PCET) mechanism on CuCoAl LDH, shedding light on the potential-dependent step (PDS) and the exclusive selectivity for nitrate-to-ammonia conversion. The CuCoAl LDH developed here offers scalability by eliminating the need for precious metals, rendering this earth-abundant catalyst particularly appealing for sustainable nitrate electrovalorization technology.

6.
J Am Chem Soc ; 145(11): 6087-6099, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36853653

ABSTRACT

Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.

7.
Small ; 19(45): e2304889, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37438574

ABSTRACT

Heterogeneous oxides with multiple interfaces provide significant advantages in electrocatalytic activity and stability. However, controlling the local structure of these oxides is challenging. In this work, unique heterojunctions are demonstrated based on two oxide types, which are formed via pyrolysis of a ruthenocene metal-organic framework (Ru-MOF) at specific temperatures. The resulted Ru-MOF-400 exhibits excellent electrocatalytic activity, with an overpotential of 190 mV at a current density of 10 mA cm-2 in 0.1 m HClO4 , and a mass activity of 2557 A gRu -1 , three orders of magnitude higher than commercial RuO2 . The Ru─O─Co bond formed by the incorporation of Co into the rutile lattice of RuO2 inhibits the disolution of Ru. Operando electrochemical investigations and density functional theory results reveal that the Ru-MOF-400 undergo asymmetric dual-active site oxide path mechanism during the acidic oxygen evolution reaction process, which is predominantly mediated by the asymmetric Ru─Co dual active site present at the interfaces between Co3 O4 and CoRuOx .

8.
Angew Chem Int Ed Engl ; 62(11): e202300094, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36656087

ABSTRACT

Electro-reforming of Polyethylene-terephthalate-derived (PET-derived) ethylene glycol (EG) into fine chemicals and H2 is an ideal solution to address severe plastic pollution. Here, we report the electrooxidation of EG to glycolic acid (GA) with a high Faraday efficiency and selectivity (>85 %) even at an industry-level current density (600 mA cm-2 at 1.15 V vs. RHE) over a Pd-Ni(OH)2 catalyst. Notably, stable electrolysis over 200 h can be achieved, outperforming all available Pd-based catalysts. Combined experimental and theoretical results reveal that 1) the OH* generation promoted by Ni(OH)2 plays a critical role in facilitating EG-to-GA oxidation and removing poisonous carbonyl species, thereby achieving high activity and stability; 2) Pd with a downshifted d-band center and the oxophilic Ni can synergistically facilitate the rapid desorption and transfer of GA from the active Pd sites to the inactive Ni sites, avoiding over-oxidation and thus achieving high selectivity.

9.
Inorg Chem ; 60(10): 6900-6910, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33621073

ABSTRACT

Precise regulation of proton-coupled electron-transfer (PCET) rates holds the key to simultaneously optimizing the turnover frequency and product selectivity of redox reactions that are central to the realization of renewable energy schemes in a sustainable future. In this work, a self-assembled monolayer (SAM) of a Ru complex electrografted onto a glassy carbon (GC) electrode was prepared as a heterogeneous electrocatalytic interface to facilitate the hydrogen peroxide (H2O2) oxidation half-cell reaction of a direct hydrogen peroxide/hydrogen peroxide fuel cell. A functional lipid membrane embedded with catalytic amounts of proton carriers was appended on top of the Ru SAM to construct a hybrid bilayer membrane (HBM) platform that can modulate the thermodynamics and kinetics of proton- and electron-transfer steps independently. The performances of the as-prepared Ru SAMs and HBMs toward H2O2 oxidation were investigated using electrochemical means, kinetic isotope effect (KIE) studies, and Tafel analyses. Proton carriers featuring borate, phosphate, and nitrile headgroups were found to dictate the transmembrane proton removal rate, thereby controlling the H2O2 oxidation activity. The first significance of this work was the expansion of HBM platforms to GC substrates to overcome the limited redox potential window on gold thiol systems, thereby enabling electrochemical investigations of anodic reactions at the SAM-lipid interface. The second highlight of this work was demonstrating for the first time that deprotonation kinetics can be taken advantage of to enhance the electrocatalytic oxidation performance of a metal complex anchored at the SAM-lipid interface of a HBM platform. When the knowledge gaps regarding how PCET steps govern redox pathways are closed, the advances achieved using our unique bioinorganic platform are envisioned to accelerate the understanding and optimization of electrocatalytic processes involving proton- and electron- transfer steps that are fundamental to the development of high-performance energy devices.

10.
Angew Chem Int Ed Engl ; 60(23): 12770-12774, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33768623

ABSTRACT

We report the synthesis of two-dimensional metal-organic frameworks (MOFs) on nickel foam (NF) by assembling nickel chloride hexahydrate and 1,1'-ferrocenedicarboxylic acid (NiFc-MOF/NF). The NiFc-MOF/NF exhibits superior oxygen evolution reaction (OER) performance with an overpotential of 195 mV and 241 mV at 10 and 100 mA cm-2 , respectively under alkaline conditions. Electrochemical results demonstrate that the superb OER performance originates from the ferrocene units that serve as efficient electron transfer intermediates. Density functional theory calculations reveal that the ferrocene units within the MOF crystalline structure enhance the overall electron transfer capacity, thereby leading to a theoretical overpotential of 0.52 eV, which is lower than that (0.81 eV) of the state-of-the-art NiFe double hydroxides.

11.
Angew Chem Int Ed Engl ; 60(15): 8236-8242, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33491294

ABSTRACT

The overall water splitting efficiency is mainly restricted by the slow kinetics of oxygen evolution. Therefore, it is essential to develop active oxygen evolution catalysts. In this context, we designed and synthesized a tungsten oxide catalyst with oxygen vacancies for photocatalytic oxygen evolution, which exhibited a higher oxygen evolution rate of 683 µmol h-1 g-1 than that of pure WO3 (159 µmol h-1 g-1 ). Subsequent studies through transient absorption spectroscopy found that the oxygen vacancies can produce electron trapping states to inhibit the direct recombination of photogenerated carriers. Additionally, a Pt cocatalyst can promote electron trap states to participate in the reaction to improve the photocatalytic performance further. This work uses femtosecond transient absorption spectroscopy to explain the photocatalytic oxygen evolution mechanism of inorganic materials and provides new insights into the design of high-efficiency water-splitting catalysts.

12.
Angew Chem Int Ed Engl ; 57(41): 13480-13483, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30171786

ABSTRACT

An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol-based self-assembled monolayers (SAMs) on Au electrodes using azide-alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid-covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.

13.
J Am Chem Soc ; 139(36): 12784-12792, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28817778

ABSTRACT

A central question important to understanding DNA repair is how certain proteins are able to search for, detect, and fix DNA damage on a biologically relevant time scale. A feature of many base excision repair proteins is that they contain [4Fe4S] clusters that may aid their search for lesions. In this paper, we establish the importance of the oxidation state of the redox-active [4Fe4S] cluster in the DNA damage detection process. We utilize DNA-modified electrodes to generate repair proteins with [4Fe4S] clusters in the 2+ and 3+ states by bulk electrolysis under an O2-free atmosphere. Anaerobic microscale thermophoresis results indicate that proteins carrying [4Fe4S]3+ clusters bind to DNA 550 times more tightly than those with [4Fe4S]2+ clusters. The measured increase in DNA-binding affinity matches the calculated affinity change associated with the redox potential shift observed for [4Fe4S] cluster proteins upon binding to DNA. We further devise an electrostatic model that shows this change in DNA-binding affinity of these proteins can be fully explained by the differences in electrostatic interactions between DNA and the [4Fe4S] cluster in the reduced versus oxidized state. We then utilize atomic force microscopy (AFM) to demonstrate that the redox state of the [4Fe4S] clusters regulates the ability of two DNA repair proteins, Endonuclease III and DinG, to bind preferentially to DNA duplexes containing a single site of DNA damage (here a base mismatch) which inhibits DNA charge transport. Together, these results show that the reduction and oxidation of [4Fe4S] clusters through DNA-mediated charge transport facilitates long-range signaling between [4Fe4S] repair proteins. The redox-modulated change in DNA-binding affinity regulates the ability of [4Fe4S] repair proteins to collaborate in the lesion detection process.


Subject(s)
DNA Repair , DNA/chemistry , Iron-Sulfur Proteins/chemistry , DNA Damage , Microscopy, Atomic Force , Oxidation-Reduction , Protein Binding , Static Electricity
14.
Nat Mater ; 15(7): 754-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27135859

ABSTRACT

Many chemical and biological processes involve the transfer of both protons and electrons. The complex mechanistic details of these proton-coupled electron transfer (PCET) reactions require independent control of both electron and proton transfer. In this report, we make use of lipid-modified electrodes to modulate proton transport to a Cu-based catalyst that facilitates the O2 reduction reaction (ORR), a PCET process important in fuel cells and O2 reduction enzymes. By quantitatively controlling the kinetics of proton transport to the catalyst, we demonstrate that undesired side products such as H2O2 and O2(-) arise from a mismatch between proton and electron transfer rates. Whereas fast proton kinetics induce H2O2 formation and sluggish proton flux produces O2(-), proton transfer rates commensurate with O-O bond breaking rates ensure that only the desired H2O product forms. This fundamental insight aids in the development of a comprehensive framework for understanding the ORR and PCET processes in general.

15.
Phys Chem Chem Phys ; 19(10): 7086-7093, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28225090

ABSTRACT

Proton-coupled electron transfer (PCET) reactions are ubiquitous in biochemistry and alternative energy schemes. Natural enzymes utilize quinones in proton transfer chains and energy conversion processes. Here, we utilize a bio-inspired hybrid bilayer membrane system to control the reaction mechanism of a quinone molecule covalently bound to an electrode surface. In particular, by impeding proton access to the quinone moiety, we change the reaction pathway from a PCET process to a pure electron transfer step. We further alter the reaction pathway to a stepwise PCET process by controlling the proton flux through the use of an alkyl proton carrier incorporated in the lipid membrane. By modulating proton availability, we control the quinone reaction pathway without changing the molecular structure of the redox species. This work provides unique insight into PCET reactions and a novel electrochemical platform for interrogating them.

16.
Biophys J ; 110(11): 2451-2462, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27276263

ABSTRACT

In this study, we examine the mechanism of flip-flop diffusion of proton carriers across the lipid layer of a hybrid bilayer membrane (HBM). The HBM consists of a lipid monolayer appended on top of a self-assembled monolayer containing a Cu-based O2 reduction catalyst on a Au electrode. The flip-flop diffusion rates of the proton carriers dictate the kinetics of O2 reduction by the electrocatalyst. By varying both the tail lengths of the proton carriers and the lipids, we find the combinations of lengths that maximize the flip-flop diffusion rate. These experimental results combined with biophysical modeling studies allow us to propose a detailed mechanism for transmembrane flip-flop diffusion in HBM systems, which involves the bending of the alkyl tail of the proton carrier as the rate-determining step. Additional studies with an unbendable proton carrier further validate these mechanistic findings.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Copper/chemistry , Diffusion , Electrodes , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Oxygen/chemistry , Proton Pumps/metabolism , Protons , Rotation , Surface Properties , Water/chemistry
17.
J Am Chem Soc ; 137(44): 14059-62, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26512414

ABSTRACT

To control proton delivery across biological membranes, we synthesized a photoresponsive molecular switch and incorporated it in a lipid layer. This proton gate was reversibly activated with 390 nm light (Z-isomer) and then deactivated by 360 nm irradiation (E-isomer). In a lipid layer this stimuli responsive proton gate allowed the regulation of proton flux with irradiation to a lipid-buried O2 reduction electrocatalyst. Thus, the catalyst was turned on and off with the E-to-Z interconversion. This light-induced membrane proton delivery system may be useful in developing any functional device that performs proton-coupled electron-transfer reactions.


Subject(s)
Lipid Bilayers/chemistry , Photochemical Processes , Protons , Stilbenes/chemistry , Electron Transport , Kinetics , Light , Molecular Structure , Stereoisomerism , Thermodynamics
18.
Anal Chem ; 87(4): 2403-9, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25597547

ABSTRACT

In this report, we use a hybrid bilayer membrane (HBM) as an electrochemical platform to study anion diffusion through a lipid monolayer. We first append lipid on a self-assembled monolayer (SAM) that contains a covalently bound Cu(I)/Cu(II) redox center. We then perform cyclic voltammetry (CV) using different anions in bulk solution and extract thermodynamic and kinetic information about anion transport. We analyze the results using linear combinations of fundamental chemical trends and determine that anion transport quantitatively correlates to polarity and basicity, a relationship we formalize as the lipid permeability parameter. In addition, we discuss how our findings can be interpreted according to the two leading mechanisms describing ion permeability through lipids. Our results demonstrate that anion transport in a HBM is best described by the solubility-diffusion mechanism, not the pore mechanism.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lipids/chemistry , Anions/metabolism , Electrochemical Techniques , Ion Transport , Kinetics , Thermodynamics
19.
Nat Mater ; 13(6): 619-23, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24813418

ABSTRACT

Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.


Subject(s)
Copper/chemistry , Electrochemical Techniques , Lipid Bilayers/chemistry , Oxygen/chemistry , Protons , Catalysis , Oxidation-Reduction
20.
J Phys Chem A ; 119(8): 1246-55, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25636087

ABSTRACT

Fundamental understanding of the oxygen reduction reaction in aqueous medium at temperatures above 100 °C is lacking due to the practical limitations related to the harsh experimental conditions. In this work, the challenge to suppress water from boiling was overcome by conducting the electrochemical investigation under pressurized conditions. A striking improvement in the kinetics of the electrocatalytic reduction of O2 by about 150 fold relative to room temperature and pressure was recorded under an O2 pressure of 3.4 MPa at 200 °C in basic aqueous environment. To deconvolute the combined effect of temperature and pressure, the underlying variables that dictate the observed O2 reduction kinetics of Pt and carbon electrodes were examined individually. O2 availability at the electrode-solution interface was controlled by the interplay between the diffusion coefficient and concentration of O2. Accurate knowledge of the temperature and pressure dependence of O2 availability at the electrode surface, the Tafel slope, the transfer coefficient, and the electrochemical active surface area was required to correctly account for the enhanced O2 reduction kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL