Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Cells ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864277

ABSTRACT

The potential involvement of the gut microbiota in metabolic dysfunction-associated steatohepatitis (MASH) pathogenesis has garnered increasing attention. In this study, we elucidated the link between high-fat/cholesterol/cholate-based (iHFC)#2 diet-induced MASH progression and gut microbiota in C57BL/6 mice using antibiotic treatments. Treatment with vancomycin (VCM), which targets gram-positive bacteria, exacerbated the progression of liver damage, steatosis, and fibrosis in iHFC#2-fed C57BL/6 mice. The expression levels of inflammation- and fibrosis-related genes in the liver significantly increased after VCM treatment for 8 weeks. F4/80+ macrophage abundance increased in the livers of VCM-treated mice. These changes were rarely observed in the iHFC#2-fed C57BL/6 mice treated with metronidazole, which targets anaerobic bacteria. A16S rRNA sequence analysis revealed a significant decrease in α-diversity in VCM-treated mice compared with that in placebo-treated mice, with Bacteroidetes and Firmicutes significantly decreased, while Proteobacteria and Verrucomicrobia increased markedly. Finally, VCM treatment dramatically altered the level and balance of bile acid (BA) composition in iHFC#2-fed C57BL/6 mice. Thus, the VCM-mediated exacerbation of MASH progression depends on the interaction between the gut microbiota, BA metabolism, and inflammatory responses in the livers of iHFC#2-fed C57BL/6 mice.

2.
J Immunol ; 210(11): 1653-1666, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37067332

ABSTRACT

Regulatory T cells (Tregs) are produced in the thymus to establish self-tolerance, and agonistic stimuli by self-Ags play a pivotal role in this process. Although two types of APCs, medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), are responsible for presenting self-Ags together with costimulatory/cytokine signals, the distinct role of each APC in producing Tregs remains enigmatic. We have approached this issue by depleting the mTECs and DCs using mice expressing diphtheria toxin receptors driven by Aire and CD11c promoters, respectively. Depletion of mTECs showed an effect on Treg production quantitatively and qualitatively more profound than that of DCs followed by the development of distinct organ-specific autoimmune lesions in the hosts. Because self-Ags produced by mTECs are transferable to DCs through a process known as Ag transfer, we monitored the process of Ag transfer using mice expressing GFP from TECs. Although GFP expressed from total TECs was effectively transferred to DCs, GFP expressed from cortical TECs was not, suggesting that mTECs are the predominant source of self-Ags. We also found that GFP expressed not only from mature mTECs but also from immature mTECs was transferred to DCs, suggesting that a broad spectrum of molecules were subjected to Ag transfer during mTEC development. Interestingly, the numbers of recirculating non-Tregs producing IL-2, an important source for Treg expansion in the thymus, were reduced only in the mTEC-depleted mice. These results suggested the cooperative but distinct role of mTECs and DCs in the production of Tregs to avoid autoimmunity.


Subject(s)
T-Lymphocytes, Regulatory , Thymus Gland , Mice , Animals , Mice, Inbred C57BL , Epithelial Cells , Dendritic Cells , Cell Differentiation
3.
Inflamm Res ; 73(7): 1081-1098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619583

ABSTRACT

BACKGROUND: Tsumura-Suzuki non-obese (TSNO) mice exhibit a severe form of metabolic dysfunction-associated steatohepatitis (MASH) with advanced liver fibrosis upon feeding a high-fat/cholesterol/cholate-based (iHFC) diet. Another ddY strain, Tsumura-Suzuki diabetes obese (TSOD) mice, are impaired in the progression of iHFC diet-induced MASH. AIM: To elucidate the underlying mechanisms contributing to the differences in MASH progression between TSNO and TSOD mice. METHODS: We analyzed differences in the immune system, gut microbiota, and bile acid metabolism in TSNO and TSOD mice fed with a normal diet (ND) or an iHFC diet. RESULTS: TSOD mice had more anti-inflammatory macrophages in the liver than TSNO mice under ND feeding, and were impaired in the iHFC diet-induced accumulation of fibrosis-associated macrophages and formation of histological hepatic crown-like structures in the liver. The gut microbiota of TSOD mice also exhibited a distinct community composition with lower diversity and higher abundance of Akkermansia muciniphila compared with that in TSNO mice. Finally, TSOD mice had lower levels of bile acids linked to intestinal barrier disruption under iHFC feeding. CONCLUSIONS: The dynamics of liver macrophage subsets, and the compositions of the gut microbiota and bile acids at steady state and post-onset of MASH, had major impacts on MASH development.


Subject(s)
Bile Acids and Salts , Diet, High-Fat , Gastrointestinal Microbiome , Liver , Macrophages , Animals , Bile Acids and Salts/metabolism , Liver/pathology , Liver/metabolism , Diet, High-Fat/adverse effects , Macrophages/metabolism , Macrophages/immunology , Male , Mice , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/microbiology , Akkermansia , Disease Progression , Cholesterol, Dietary/adverse effects
4.
J Pathol ; 261(4): 465-476, 2023 12.
Article in English | MEDLINE | ID: mdl-37781961

ABSTRACT

While brain-derived neurotrophic factor (BDNF), which is a growth factor associated with cognitive improvement and the alleviation of depression symptoms, is known to regulate food intake and body weight, the role of BDNF in peripheral disease is not fully understood. Here, we show that reduced BDNF expression is associated with weight gain and the chronic liver disease non-alcoholic steatohepatitis (NASH). At 10 months of age, BDNF-heterozygous (BDNF+/- ) mice developed symptoms of NASH: centrilobular/perivenular steatosis, lobular inflammation with infiltration of neutrophils, ballooning hepatocytes, and fibrosis of the liver. Obesity and higher serum levels of glucose and insulin - major pathologic features in human NASH - were dramatic. Dying adipocytes were surrounded by macrophages in visceral fat, suggesting that chronic inflammation occurs in peripheral organs. RNA sequencing (RNA-seq) studies of the liver revealed that the most significantly enriched Gene Ontology term involved fatty acid metabolic processes and the modulation of neutrophil aggregation, pathologies that well characterise NASH. Gene expression analysis by RNA-seq also support the notion that BDNF+/- mice are under oxidative stress, as indicated by alterations in the expression of the cytochrome P450 family and a reduction in glutathione S-transferase p, an antioxidant enzyme. Histopathologic phenotypes of NASH were also observed in a knock-in mouse (BDNF+/pro ), in which the precursor BDNF is inefficiently converted into the mature form of BDNF. Lastly, as BDNF reduction causes overeating and subsequent obesity, a food restriction study was conducted in BDNF+/pro mice. Pair-fed BDNF+/pro mice developed hepatocellular damage and showed infiltration of inflammatory cells, including neutrophils in the liver, despite having body weights and blood parameters that were comparable to those of controls. This is the first report demonstrating that reduced BDNF expression plays a role in the pathogenic mechanism of NASH, which is a hepatic manifestation of metabolic syndrome. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Mice, Knockout , Liver/pathology , Inflammation/pathology , Obesity/complications , Mice, Inbred C57BL , Disease Models, Animal , Diet, High-Fat
5.
J Pathol ; 260(2): 222-234, 2023 06.
Article in English | MEDLINE | ID: mdl-36853094

ABSTRACT

Autoimmune regulator (Aire) and TGF-ß signaling play important roles in central tolerance and peripheral tolerance, respectively, by eliminating or suppressing the activity of autoreactive T cells. We previously demonstrated that dnTGFßRII mice develop a defect in peripheral tolerance and a primary biliary cholangitis (PBC)-like disease. We hypothesized that by introducing the Aire gene to this model, we would observe a more severe PBC phenotype. Interestingly, however, we demonstrated that, while dnTGFßRII Aire-/- mice do manifest key histological and serological features of autoimmune cholangitis, they also develop mild to moderate interface hepatitis and show high levels of alanine transaminase (ALT) and antinuclear antibodies (ANA), characteristics of autoimmune hepatitis (AIH). To further understand this unique phenotype, we performed RNA sequencing (RNA-seq) and flow cytometry to explore the functional pathways and immune cell pathways in the liver of dnTGFßRII Aire-/- mice. Our data revealed enrichments of programmed cell death pathways and predominant CD8+ T cell infiltrates. Depleting CD8+ T cells using an anti-CD8α antibody significantly alleviated hepatic inflammation and prolonged the life span of these mice. Finally, RNA-seq data indicated the clonal expansion of hepatic CD8+ T cells. In conclusion, these mice developed an autoreactive CD8+ T-cell-mediated autoimmune cholangitis with concurrent hepatitis that exhibited key histological and serological features of the AIH-PBC overlap syndrome, representing a novel model for the study of tolerance and autoimmune liver disease. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cholangitis , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Mice , Animals , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/metabolism , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/metabolism , CD8-Positive T-Lymphocytes , Cholangitis/genetics , Cholangitis/metabolism
6.
J Immunol ; 208(2): 303-320, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34930780

ABSTRACT

The deficiency of Aire, a transcriptional regulator whose defect results in the development of autoimmunity, is associated with reduced expression of tissue-restricted self-Ags (TRAs) in medullary thymic epithelial cells (mTECs). Although the mechanisms underlying Aire-dependent expression of TRAs need to be explored, the physical identification of the target(s) of Aire has been hampered by the low and promiscuous expression of TRAs. We have tackled this issue by engineering mice with augmented Aire expression. Integration of the transcriptomic data from Aire-augmented and Aire-deficient mTECs revealed that a large proportion of so-called Aire-dependent genes, including those of TRAs, may not be direct transcriptional targets downstream of Aire. Rather, Aire induces TRA expression indirectly through controlling the heterogeneity of mTECs, as revealed by single-cell analyses. In contrast, Ccl25 emerged as a canonical target of Aire, and we verified this both in vitro and in vivo. Our approach has illuminated the Aire's primary targets while distinguishing them from the secondary targets.


Subject(s)
Autoantigens/immunology , Autoimmunity/immunology , Chemokines, CC/metabolism , Thymus Gland/immunology , Transcription Factors/metabolism , Animals , Autoimmunity/genetics , Chemokines, CC/genetics , Epithelial Cells/immunology , Gene Expression Regulation , Gene Knock-In Techniques , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Thymus Gland/cytology , Transcription Factors/genetics , Transcription, Genetic/genetics , AIRE Protein
7.
Biochem Biophys Res Commun ; 664: 77-85, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37146560

ABSTRACT

Radioprotective 105 (RP105) plays a key role in the development of high-fat diet (HFD)-induced metabolic disorders; however, the underlying mechanisms remain to be understood. Here, we aimed to uncover whether RP105 affects metabolic syndrome through the modification of gut microbiota. We confirmed that body weight gain and fat accumulation by HFD feeding were suppressed in Rp105-/- mice. Fecal microbiome transplantation from HFD-fed donor Rp105-/- mice into HFD-fed recipient wild-type mice significantly improved various abnormalities associated with metabolic syndrome, including body weight gain, insulin resistance, hepatic steatosis, macrophage infiltration and inflammation in the adipose tissue. In addition, HFD-induced intestinal barrier dysfunction was attenuated by fecal microbiome transplantation from HFD-fed donor Rp105-/- mice. A 16S rRNA sequence analysis indicated that RP105 modified gut microbiota composition and was involved in the maintenance of its diversity. Thus, RP105 promotes metabolic syndrome by altering gut microbiota composition and intestinal barrier function.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Animals , Mice , Obesity/metabolism , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Diet, High-Fat/adverse effects , Weight Gain , Immunity, Innate , Mice, Inbred C57BL
8.
Am J Pathol ; 192(1): 31-42, 2022 01.
Article in English | MEDLINE | ID: mdl-34710382

ABSTRACT

While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.


Subject(s)
Lipids/chemistry , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Body Weight , Disease Models, Animal , Energy Intake , Gene Expression Regulation , Lipids/blood , Liver/pathology , Male , Mice, Inbred C57BL , Models, Biological , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Organ Size , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
J Autoimmun ; 136: 103027, 2023 04.
Article in English | MEDLINE | ID: mdl-36996700

ABSTRACT

Primary biliary cholangitis (PBC) is a classic autoimmune disease due to the loss of tolerance to self-antigens. Bile acids (BA) reportedly play a major role in biliary inflammation and/or in the modulation of dysregulated immune responses in PBC. Several murine models have indicated that molecular mimicry plays a role in autoimmune cholangitis; however, they have all been limited by the relative failure to develop hepatic fibrosis. We hypothesized that species-specific differences in the BA composition between mice and humans were the primary reason for this limited pathology. Here, we aimed to study the impact of human-like hydrophobic BA composition on the development of autoimmune cholangitis and hepatic fibrosis. We took advantage of a unique construct, Cyp2c70/Cyp2a12 double knockout (DKO) mice, which have human-like BA composition, and immunized them with a well-defined mimic of the major mitochondrial autoantigen of PBC, namely 2-octynoic acid (2OA). 2OA-treated DKO mice were significantly exacerbated portal inflammation and bile duct damage with increased Th1 cytokines/chemokines at 8 weeks post-initial immunization. Most importantly, there was clear progression of hepatic fibrosis and increased expression of hepatic fibrosis-related genes. Interestingly, these mice demonstrated increased serum BA concentrations and decreased biliary BA concentrations; hepatic BA levels did not increase because of the upregulation of transporters responsible for the basolateral efflux of BA. Furthermore, cholangitis and hepatic fibrosis were more advanced at 24 weeks post-initial immunization. These results indicate that both the loss of tolerance and the effect of hydrophobic BA are essential for the progression of PBC.


Subject(s)
Autoimmune Diseases , Cholangitis , Liver Cirrhosis, Biliary , Humans , Animals , Mice , Bile Acids and Salts , Liver Cirrhosis , Inflammation , Autoantigens , Disease Models, Animal
10.
Dig Dis Sci ; 68(5): 1885-1893, 2023 05.
Article in English | MEDLINE | ID: mdl-36504013

ABSTRACT

BACKGROUND: Chronic inflammation, such as ulcerative colitis, increases the risk of developing colitis-associated cancers. Currently, mice administered with azoxymethane/dextran sodium sulfate are well-known models for colitis-associated cancers. Although human colitis-associated cancers are often flat lesions, most azoxymethane/dextran sodium sulfate mouse cancers are raised lesions. AIMS: To establish a novel mouse model for colitis-associated cancers and evaluate its characteristics. METHODS: A single dose of azoxymethane was intraperitoneally administered to CD4-dnTGFßRII mice, which are genetically modified mice that spontaneously develop inflammatory bowel disease at different doses and timings. The morphological and biological characteristics of cancers was assessed in these mice. RESULTS: Colorectal cancer developed with different proportions in each group. In particular, a high rate of cancer was observed at 10 and 20 weeks after administration in 12-week-old CD4-dnTGFßRII mice dosed at 15 mg/kg. Immunohistochemical staining of tumors was positive for ß-catenin, ki67, and Sox9 but not for p53. Grade of inflammation was significantly higher in mice with cancer than in those without cancer (p < 0.001). In CD4-dnTGFßRII/azoxymethane mice, adenocarcinomas with flat lesions were observed, with moderate-to-severe inflammation in the non-tumor area. In comparison, non-tumor areas of azoxymethane/dextran sodium sulfate mice had less inflammation than those of CD4-dnTGFßRII/azoxymethane mice, and most macroscopic characteristics of tumors were pedunculated or sessile lesions in azoxymethane/dextran sodium sulfate mice. CONCLUSIONS: Although feasibility and reproducibility of azoxymethane/CD4-dbTGFßRII appear to be disadvantages compared to the azoxymethane/dextran sodium sulfate model, this is the first report to demonstrate that the chronic inflammatory colitis model, CD4-dnTGFßRII also develops colitis-related colorectal cancer.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Colorectal Neoplasms , Humans , Animals , Mice , Dextrans , Reproducibility of Results , Colitis/chemically induced , Colitis/complications , Colitis/pathology , Azoxymethane/toxicity , Inflammation , Dextran Sulfate/toxicity , Disease Models, Animal , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology
11.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835461

ABSTRACT

The potential roles of the gut microbiota in the pathogenesis of non-alcoholic fatty liver disease, including non-alcoholic steatohepatitis (NASH), have attracted increased interest. We have investigated the links between gut microbiota and NASH development in Tsumura-Suzuki non-obese mice fed a high-fat/cholesterol/cholate-based (iHFC) diet that exhibit advanced liver fibrosis using antibiotic treatments. The administration of vancomycin, which targets Gram-positive organisms, exacerbated the progression of liver damage, steatohepatitis, and fibrosis in iHFC-fed mice, but not in mice fed a normal diet. F4/80+-recruited macrophages were more abundant in the liver of vancomycin-treated iHFC-fed mice. The infiltration of CD11c+-recruited macrophages into the liver, forming hepatic crown-like structures, was enhanced by vancomycin treatment. The co-localization of this macrophage subset with collagen was greatly augmented in the liver of vancomycin-treated iHFC-fed mice. These changes were rarely seen with the administration of metronidazole, which targets anaerobic organisms, in iHFC-fed mice. Finally, the vancomycin treatment dramatically modulated the level and composition of bile acid in iHFC-fed mice. Thus, our data demonstrate that changes in inflammation and fibrosis in the liver by the iHFC diet can be modified by antibiotic-induced changes in gut microbiota and shed light on their roles in the pathogenesis of advanced liver fibrosis.


Subject(s)
Anti-Bacterial Agents , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Vancomycin , Animals , Mice , Anti-Bacterial Agents/pharmacology , Bile Acids and Salts/metabolism , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Vancomycin/pharmacology
12.
J Cell Sci ; 133(18)2020 09 15.
Article in English | MEDLINE | ID: mdl-32934012

ABSTRACT

During mitosis, the chromosomal passenger complex (CPC) ensures the faithful transmission of the genome. The CPC is composed of the enzymatic component Aurora B (AURKB) and the three regulatory and targeting components borealin, INCENP, and survivin (also known as BIRC5). Although the CPC is known to be involved in diverse mitotic events, it is still unclear how CPC function terminates after mitosis. Here we show that borealin is ubiquitylated by the anaphase promoting complex/cyclosome (APC/C) and its cofactor Cdh1 (also known as FZR1) and is subsequently degraded in G1 phase. Cdh1 binds to regions within the N terminus of borealin that act as a non-canonical degron. Aurora B has also been shown previously to be degraded by the APC/CCdh1 from late mitosis to G1. Indeed, Cdh1 depletion sustains an Aurora B activity with stable levels of borealin and Aurora B throughout the cell cycle, and causes reduced efficiency of DNA replication after release from serum starvation. Notably, inhibition of Aurora B kinase activity improves the efficiency of DNA replication in Cdh1-depleted cells. We thus propose that APC/CCdh1 terminates CPC activity upon mitotic exit and thereby contributes to proper control of DNA replication.


Subject(s)
Cell Cycle Proteins , Mitosis , Anaphase-Promoting Complex-Cyclosome/genetics , Animals , Aurora Kinase B/genetics , Cell Cycle Proteins/genetics , Cytoskeleton , G1 Phase , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout
13.
Eur J Immunol ; 51(6): 1519-1530, 2021 06.
Article in English | MEDLINE | ID: mdl-33710617

ABSTRACT

Ursodeoxycholic acid (UDCA) is the primary treatment for primary biliary cholangitis (PBC), but its mechanism of action remains unclear. Studies suggest that UDCA enhances NF erythroid 2-related factor 2 (NFE2L2) expression and that the interaction between IFN-γ and C-X3-C motif chemokine ligand 1 (CX3CL1) facilitates biliary inflammation in PBC. Therefore, we examined the effects of UDCA on the expression of IFN-γ and CX3CL1 in in vitro and in vivo PBC models such as human liver tissue, a murine model, cell lines, and isolated human intrahepatic biliary epithelial cells (IHBECs). We observed a significant decrease in IFN-γ mRNA levels and positive correlations between IFN-γ and CX3CL1 mRNA levels post-UDCA treatment in PBC livers. NFE2L2-mediated transcriptional activation was significantly enhanced in UDCA-treated Jurkat cells. In 2-octynoic acid-immunized mice, IFN-γ production by liver-infiltrating T cells was dependent on NFE2L2 activation. IFN-γ significantly and dose-dependentlyinduced CX3CL1 expression, which was significantly decreased in HuCC-T1 cells and IHBECs upon UDCA treatment. These results suggest that UDCA-induced suppression of IFN-γ and CX3CL1 production attenuates the chemotactic and adhesive abilities of liver-infiltrating T cells in PBC.


Subject(s)
Chemokine CX3CL1/metabolism , Cholagogues and Choleretics/therapeutic use , Epithelial Cells/physiology , Interferon-gamma/metabolism , Liver Cirrhosis, Biliary/drug therapy , Liver/immunology , T-Lymphocytes/immunology , Ursodeoxycholic Acid/therapeutic use , Adult , Aged , Aged, 80 and over , Chemotaxis , Female , Humans , Immunosuppression Therapy , Interferon-gamma/genetics , Jurkat Cells , Liver/pathology , Liver Cirrhosis, Biliary/immunology , Male , Middle Aged
14.
Immunol Cell Biol ; 100(5): 371-377, 2022 05.
Article in English | MEDLINE | ID: mdl-35313042

ABSTRACT

Deficiency for AIRE/Aire in both humans and mice results in the development of organ-specific autoimmune disease. We tested whether augmented and/or dysregulated AIRE/Aire expression might be also prone to the breakdown of self-tolerance. To define the effect of augmented Aire expression on the development of autoimmunity, antigen-specific clonal deletion and production of clonotypic regulatory T cells (Tregs) in the thymus were examined using mice expressing two additional copies of Aire in a heterozygous state (3xAire-knockin mice: 3xAire-KI). We found that both clonal deletion of autoreactive T cells and production of clonotypic Tregs in the thymus from 3xAire-KI were impaired in a T-cell receptor-transgenic system. Furthermore, 3xAire-KI females showed higher scores of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein than wild-type littermates, suggesting that augmented Aire expression exacerbates organ-specific autoimmunity under disease-prone conditions. In humans, we found that one patient with amyopathic dermatomyositis showed CD3- CD19- cells expressing AIRE in the peripheral blood before the treatment but not during the remission phase treated with immunosuppressive drugs. Thus, not only loss of function of AIRE/Aire but also augmented and/or dysregulated expression of AIRE/Aire should be considered for the pathogenesis of organ-specific autoimmunity. We suggest that further analyses should be pursued to establish a novel link between organ-specific autoimmune disease and dysregulated AIRE expression in clinical settings.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Animals , Clonal Deletion , Female , Humans , Immune Tolerance , Mice , Myelin-Oligodendrocyte Glycoprotein , Thymus Gland
15.
J Autoimmun ; 132: 102897, 2022 10.
Article in English | MEDLINE | ID: mdl-36029718

ABSTRACT

OBJECTIVE: The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS: To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS: Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.


Subject(s)
Autoimmune Diseases , Cholangitis , Humans , Female , Mice , Animals , Cholangitis/drug therapy , Autoimmune Diseases/drug therapy , Antigens, CD20 , Autoantibodies , Immunoglobulin M
16.
J Gastroenterol Hepatol ; 37(5): 919-927, 2022 May.
Article in English | MEDLINE | ID: mdl-35332577

ABSTRACT

BACKGROUND AND AIM: Although rectal neuroendocrine tumor (NET-G1) have potential metastatic capability, even among small tumors, no predictive biomarker for invasion and metastasis has been reported. We analyzed microRNA (miRNA) expression profiles in rectal NET-G1 tissues with and without lymphovascular invasion (LVI). Moreover, we then investigated their target genes to clarify the mechanism of invasion/metastasis in NET-G1. METHODS: miRNA array analysis was performed using seven rectal NET-G1 tissues with LVI and seven without LVI. miRNA expression was confirmed by quantitative real-time PCR. A NET cell line H727 was transfected with miRNA mimic or target gene small interfering RNA, and migration and invasion assays were performed. RESULTS: The expression levels of miR-144-3p and miR-451a were significantly higher in NET-G1 with LVI versus without LVI, as determined by miRNA array analysis and RT-qPCR. A significant correlation was observed between miR-144-3p and miR-451a expression levels, strongly suggesting miR144/451 cluster overexpression in NET-G1 with LVI. Bioinformatic analysis of target genes revealed that miR-144-3p and miR-451a directly interact with PTEN and p19 mRNA, respectively. Immunohistochemistry revealed significantly lower expression of PTEN and p19 in NET-G1 tissues with LVI than in those without LVI. The miR-144-3p and miR-451a mimic significantly increased cell migration/invasion capability, respectively. Knockdown of PTEN and p19 induced significant augmentation of cell invasion and migration capability, respectively. CONCLUSIONS: Our data suggest that overexpression of miR-144/miR-451 cluster promotes LVI via repression of PTEN and p19 in rectal NET-G1 cells. miR-144/451 cluster may be a novel biomarker for predicting invasion/metastasis in rectal NET-G1.


Subject(s)
MicroRNAs , Neuroendocrine Tumors , Rectal Neoplasms , Biomarkers , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroendocrine Tumors/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Rectal Neoplasms/genetics
17.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682957

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis with insulin resistance, oxidative stress, lipotoxicity, adipokine secretion by fat cells, endotoxins (lipopolysaccharides) released by gut microbiota, and endoplasmic reticulum stress. Together, these factors promote NAFLD progression from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and eventually end-stage liver diseases in a proportion of cases. Hepatic fibrosis and carcinogenesis often progress together, sharing inflammatory pathways. However, NASH can lead to hepatocarcinogenesis with minimal inflammation or fibrosis. In such instances, insulin resistance, oxidative stress, and lipotoxicity can directly lead to liver carcinogenesis through genetic and epigenetic alterations. Transforming growth factor (TGF)-ß signaling is implicated in hepatic fibrogenesis and carcinogenesis. TGF-ß type I receptor (TßRI) and activated-Ras/c-Jun-N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3 to create two phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TßRI/pSmad3C signaling terminates cell proliferation, while constitutive Ras activation and JNK-mediated pSmad3L promote hepatocyte proliferation and carcinogenesis. The pSmad3L signaling pathway also antagonizes cytostatic pSmad3C signaling. This review addresses TGF-ß/Smad signaling in hepatic carcinogenesis complicating NASH. We also discuss Smad phospho-isoforms as biomarkers predicting HCC in NASH patients with or without cirrhosis.


Subject(s)
Carcinoma, Hepatocellular , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Carcinogenesis , Carcinoma, Hepatocellular/metabolism , Humans , Liver Cirrhosis , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Protein Isoforms/metabolism , Signal Transduction/physiology , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism
18.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012527

ABSTRACT

BACKGROUND: Recently, we established a novel rodent model of nonalcoholic steatohepatitis (NASH) with advanced fibrosis induced by a high-fat and high-cholesterol (HFC) diet containing cholic acid (CA), which is known to cause hepatotoxicity. The present study aimed to elucidate the direct impact of dietary CA on the progression of NASH induced by feeding the HFC diet. METHODS: Nine-week-old male Sprague-Dawley rats were randomly assigned to receive a normal, HFC, or CA-supplemented (0.1%, 0.5% or 2.0%, w/w) HFC diet for 9 weeks. RESULTS: Histopathological assessment revealed that the supplementation of CA dose-dependently aggravated hepatic steatosis, inflammation, and fibrosis, reaching stage 4 cirrhosis in the 2.0% CA diet group. In contrast, the rats that were fed the HFC diet without any added CA developed mild steatosis and inflammation without fibrosis. The hepatic cholesterol content and mRNA expression involved in inflammatory response and fibrogenesis was higher in a CA dose-dependent manner. The hepatic chenodeoxycholic acid levels were higher in 2.0% CA diet group than in the control, although hepatic levels of total bile acid and CA did not increase dose-dependently with CA intake. CONCLUSION: Adding CA to the HFC diet altered bile acid metabolism and inflammatory response and triggered the development of fibrosis in the rat liver.


Subject(s)
Hypercholesterolemia , Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Animals , Cholesterol/metabolism , Cholesterol, Dietary/adverse effects , Cholesterol, Dietary/metabolism , Cholic Acid/adverse effects , Cholic Acid/metabolism , Diet , Diet, High-Fat/adverse effects , Disease Models, Animal , Hypercholesterolemia/metabolism , Hyperlipidemias/metabolism , Inflammation/pathology , Liver/metabolism , Liver Cirrhosis/pathology , Male , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Rats, Sprague-Dawley
19.
Int J Mol Sci ; 23(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35328778

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is associated with the chronic progression of fibrosis. In general, the progression of liver fibrosis is determined by a histopathological assessment with a collagen-stained section; however, the ultra-early stage of liver fibrosis is challenging to identify because of the low sensitivity in the collagen-selective staining method. In the present study, we demonstrate the feasibility of second-harmonic generation (SHG) microscopy in the histopathological diagnosis of the liver of NAFLD patients for the quantitative assessment of the ultra-early stage of fibrosis. We investigated four representative NAFLD patients with early stages of fibrosis. SHG microscopy visualised well-matured fibrotic structures and early fibrosis diffusely involving liver tissues, whereas early fibrosis is challenging to be identified by conventional histopathological methods. Furthermore, the SHG emission directionality analysis revealed the maturation of each collagen fibre of each patient. As a result, SHG microscopy is feasible for assessing liver fibrosis on NAFLD patients, including the ultra-early stage of liver fibrosis that is difficult to diagnose by the conventional histopathological method. The assessment method of the ultra-early fibrosis by using SHG microscopy may serve as a crucial means for pathological, clinical, and prognostic diagnosis of NAFLD patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Second Harmonic Generation Microscopy , Biopsy/methods , Collagen , Fibrosis , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/complications
20.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233225

ABSTRACT

Male Tsumura-Suzuki Obese Diabetes (TSOD) mice, a spontaneous metabolic syndrome model, develop non-alcoholic steatohepatitis and liver tumors by feeding on a standard mouse diet. Nearly 70% of liver tumors express glutamine synthetase (GS), a marker of hepatocellular carcinoma. In contrast, approximately 30% are GS-negative without prominent nuclear or structural atypia. In this study, we examined the characteristics of the GS-negative tumors of TSOD mice. Twenty male TSOD mice were sacrificed at 40 weeks and a total of 21 tumors were analyzed by HE staining and immunostaining of GS, liver fatty acid-binding protein (L-FABP), serum amyloid A (SAA), and beta-catenin. With immunostaining for GS, six (29%) tumors were negative. Based on the histological and immunohistological characteristics, six GS-negative tumors were classified into several subtypes of human hepatocellular adenoma (HCA). One large tumor showed generally similar findings to inflammatory HCA, but contained small atypical foci with GS staining and partial nuclear beta-catenin expression suggesting malignant transformation. GS-negative tumors of TSOD mice contained features similar to various subtypes of HCA. Different HCA subtypes occurring in the same liver have been reported in humans; however, the diversity of patient backgrounds limits the ability to conduct a detailed, multifaceted analysis. TSOD mice may share similar mechanisms of HCA development as in humans. It is timely to review the pathogenesis of HCA from both genetic and environmental perspectives, and it is expected that TSOD mice will make further contributions in this regard.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Diabetes Mellitus , Liver Neoplasms , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Adenoma, Liver Cell/etiology , Adenoma, Liver Cell/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Fatty Acid-Binding Proteins/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Male , Metabolic Syndrome/complications , Mice , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Serum Amyloid A Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL