Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902625

ABSTRACT

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Subject(s)
Aegilops , Seeds , Triticum , Triticum/genetics , Triticum/metabolism , Aegilops/genetics , Aegilops/metabolism , Seeds/genetics , Seeds/metabolism , Hybridization, Genetic , Polyploidy , Starch/biosynthesis , Starch/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Proteomics/methods , Multiomics
2.
J Am Chem Soc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975938

ABSTRACT

An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.

3.
Environ Res ; 245: 118007, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154561

ABSTRACT

Polychlorinated dibenzothiophenes (PCDTs) are a form of emerging pollutant that has attracted great attention due to their structural resemblance to dioxins, which cast detrimental influence on the ecosystem and human health. This review shows the current status of research on PCDTs, focusing on their environmental occurrence, physicochemical properties, environmental behavior, and toxicity. Studies have suggested that the steps leading to the formation of PCDTs resemble those generating polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs), indicating their probable origin from the same sources. Furthermore, they may undergo a dechlorination process as a result of their photodegradation in the environment and metabolic reaction occurring within organisms, which could result in the conversion of these substances into additional pollutants like dibenzothiophene. PCDTs exist widely in the environmental media and have high logKOW values (>4.0), indicating their tendency to bioaccumulate. Moreover, the prediction results of EPI (Estimation Program Interface) Suite demonstrated a strong accumulation capacity for tetra-CDTs in fish compared to other chlorinated PCDTs. The biotransformation half-life of PCDTs would prolong with an increasing number of substituted Cl atoms in fish. A limited number of studies have also suggested that PCDTs can cause damage to the liver and immune system in living organisms, and the toxicity of PCDTs depends on the number and position of substituted Cl atoms. Future studies should be conducted on processes causing PCDT toxicity as well as their behavior and fate in actual environments.


Subject(s)
Benzofurans , Dioxins , Environmental Pollutants , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Thiophenes , Animals , Humans , Polychlorinated Dibenzodioxins/analysis , Dibenzofurans , Benzofurans/toxicity , Benzofurans/analysis , Ecosystem , Environmental Pollutants/analysis , Dibenzofurans, Polychlorinated , Fishes/metabolism , Environmental Monitoring
4.
Adv Tech Stand Neurosurg ; 49: 1-18, 2024.
Article in English | MEDLINE | ID: mdl-38700677

ABSTRACT

Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.


Subject(s)
Biomarkers , Moyamoya Disease , Ubiquitin-Protein Ligases , Humans , Adenosine Triphosphatases/genetics , Biomarkers/metabolism , Biomarkers/blood , Moyamoya Disease/genetics , Moyamoya Disease/diagnosis , Ubiquitin-Protein Ligases/genetics
5.
Neurocrit Care ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253924

ABSTRACT

BACKGROUND: External ventricular drain (EVD) is used for monitoring intracranial pressure or diverting cerebrospinal fluid. However, confirmation of an infection is not immediate and requires obtaining culture results, often leading to the excessive use of antibiotics. This study aimed to compare noninfectious ventriculitis and EVD infection in terms of the risk factors, predictors, prognosis, and effectiveness of care bundle interventions. METHODS: This retrospective study was conducted at a medical center with 1,006 beds in northern Taiwan between January 2018 and July 2022. Standard EVD insertion protocols and care bundles have been implemented since 2018, along with the initiation of chlorhexidine. RESULTS: In total, 742 EVD cases were identified. Noninfectious ventriculitis typically presents with fever approximately 8 days following EVD placement, whereas EVD infection typically manifests as fever after 20 days. Aneurysmal subarachnoid hemorrhage was strongly associated with the development of noninfectious ventriculitis (adjusted odds ratio [OR] 2.6, 95% confidence interval [CI] 1.5-4.4). Alcoholism (adjusted OR 3.5, 95% CI 1.1-12.3) and arteriovenous malformation (adjusted OR 13.1, 95% CI 2.9-58.2) significantly increased the risk of EVD infection. The EVD infection rate significantly decreased from 3.6% (14 of 446) to 1.0% (3 of 219) (p = 0.03) after the implementation of chlorhexidine gluconate bathing. CONCLUSIONS: Aneurysmal subarachnoid hemorrhage or fever with neuroinflammation within 2 weeks of EVD placement is indicative of a higher likelihood of noninfectious ventriculitis. Conversely, patients with arteriovenous malformation, alcoholism, or fever with neuroinflammation occurring after more than 3 weeks of EVD placement are more likely to necessitate antibiotic treatment for EVD infection. Chlorhexidine gluconate bathing decreases EVD infection.

6.
Sheng Li Xue Bao ; 76(2): 346-352, 2024 Apr 25.
Article in Zh | MEDLINE | ID: mdl-38658383

ABSTRACT

Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.


Subject(s)
Asthma , B7-H1 Antigen , Pulmonary Disease, Chronic Obstructive , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Asthma/immunology , Acute Lung Injury/immunology , Inflammation/immunology , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases/immunology , Lung Diseases/metabolism , Animals
7.
J Am Chem Soc ; 145(40): 22122-22134, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37749771

ABSTRACT

A nickel hydride-catalyzed regio- and enantioselective hydroalkylation reaction was developed to give access to a library of chiral ß- or γ-branched aromatic N-heterocycles. This intriguing asymmetric transformation features excellent selectivities, step- and atom-economies, and generating two kinds of chiral products through one synthetic strategy. Furthermore, the possible reaction mechanism was extensively investigated using numerous control experiments and density functional theory calculations.

8.
J Am Chem Soc ; 145(49): 26550-26556, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019148

ABSTRACT

A catalytic enantioselective polycyclization of tertiary enamides with terminal silyl enol ethers has been developed by virtue of Cu(OTf)2 catalysis with a novel spiropyrroline-derived oxazole (SPDO) ligand. This tandem reaction offers an effective approach to assemble bicyclic and tricyclic N-heterocycles bearing both aza- and oxa-quaternary stereogenic centers, which are primal subunits in a range of natural alkaloids. Strategic application of this methodology and a late-stage radical cyclization as key steps have been showcased in the concise total synthesis of (-)-cephalocyclidin A.

9.
J Am Chem Soc ; 145(39): 21170-21175, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37605370

ABSTRACT

The first total syntheses of polycyclic diterpenes phomopsene (1), methyl phomopsenonate (2), and iso-phomopsene (3) have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules 1-3. This work enables us to determine that the correct structure of iso-phomopsene is, in fact, the C7 epimer of the originally assigned structure. Finally, the absolute configurations of three target molecules were confirmed through enantioselective synthesis.

10.
J Org Chem ; 88(20): 14670-14675, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37815481

ABSTRACT

An asymmetric [3+2] cycloaddition of quinone esters with 2,3-dihydrofuran has been realized via a newly developed Cu(II)/SPDO complex. It provides straightforward access to 2,3,3a,8a-tetrahydrofuro[2,3-b]benzofurans (TFB) with high enantioselectivity (up to 97.5:2.5 er) and diastereoselectivity (all >20:1 dr). The resulting adducts contain two adjacent stereocenters and a continuously functionalized benzene ring. Additionally, this transformation could be easily performed on a gram scale, allowing for expedient synthesis of natural dihydroaflatoxin D2 and aflatoxin B2.

11.
J Formos Med Assoc ; 122(2): 164-171, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36117035

ABSTRACT

PURPOSE: The use of a continuous lumbar drain (LD) for the treatment of aneurysmal subarachnoid hemorrhage (aSAH), and malondialdehyde (MDA), a marker of oxidative stress, is correlated with clinical outcome. This study aimed to investigate the relationship between LD placement and MDA level after aSAH. METHODS: Patients with modified Fisher's grade III and IV aSAH who underwent early aneurysm obliteration were enrolled. Cerebrospinal fluid (CSF) was obtained on day 7 after aSAH in non-LD group. In LD group, the LD was inserted on day 3 after aSAH for continuous CSF drainage. The levels of intrathecal hemoglobin, total bilirubin, ferritin, and MDA were measured. RESULTS: There were 41 patients in non-LD group (age: 58.7 ± 13.7 years; female: 61.0%) and 48 patients in LD group (age: 58.3 ± 10.4 years; female: 79.2%). There were more favorable outcomes (Glasgow Outcome Scale ≥4) at 3 months after aSAH in LD group (p = 0.0042). The intrathecal hemoglobin, total bilirubin, ferritin, and MDA levels at day 7 after aSAH were all significantly lower in LD group. An older age (>60 years) (p = 0.0293), higher MDA level in the CSF (p = 0.0208), and delayed ischemic neurological deficit (p = 0.0451) were independent factors associated with unfavorable outcomes. LD placement was associated with a decreased intrathecal MDA level on day 7 after aSAH (p < 0.001). CONCLUSION: The intrathecal MDA level at day 7 after aSAH can be an effective outcome indicator in modified Fisher's grade III/IV aSAH. Continuous CSF drainage via a LD can decrease the intrathecal MDA level and improve the functional outcome.


Subject(s)
Subarachnoid Hemorrhage , Aged , Female , Humans , Middle Aged , Bilirubin , Drainage , Ferritins , Malondialdehyde/cerebrospinal fluid , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/therapy
12.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769234

ABSTRACT

The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Neurodegenerative Diseases , Vascular Diseases , Humans , Neurodegenerative Diseases/pathology , Alzheimer Disease/pathology , Brain/pathology , Dementia, Vascular/pathology , Blood-Brain Barrier/pathology , Vascular Diseases/pathology , Cognitive Dysfunction/pathology
13.
Angew Chem Int Ed Engl ; 62(43): e202310764, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37668107

ABSTRACT

Pnictogen bonding (PnB) has gained recognition as an appealing strategy for constructing novel architectures and unlocking new properties. Within the synthetic community, the development of a straightforward and much simpler protocol for cross-electrophile C-PIII coupling remains an ongoing challenge with organic halides. In this study, we present a simple strategy for photoinduced PnB-enabled cross-electrophile C-PIII couplings using readily available chlorophosphines and organic halides via merging single electron transfer (SET) and halogen atom transfer (XAT) processes. In this photomediated transformation, the PnB formed between chlorophosphines and alkyl amines facilitates the photogeneration of PIII radicals and α-aminoalkyl radicals through SET. Subsequently, the resulting α-aminoalkyl radicals activate C-X bonds via XAT, leading to the formation of carbon radicals. This methodology offers operational simplicity and compatibility with both aliphatic and aromatic chlorophosphines and organic halides.

14.
Angew Chem Int Ed Engl ; 62(39): e202308858, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37462217

ABSTRACT

An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.

15.
J Org Chem ; 87(22): 15031-15041, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36325975

ABSTRACT

An example of asymmetric Steglich-type rearrangement of enol lactones is reported. This highly enantioselective acyl transfer reaction is catalyzed by chiral isothiourea at ambient temperature and provides a useful synthetic approach to access enantioenriched spirotricyclic ß,ß'-diketones from a broad range of indanone or tetralone-derived lactones. Preliminary mechanistic studies suggest the initial formation of an N-acylated iminium cation intermediate that induces a following facial selective condensation.


Subject(s)
Ketones , Lactones , Stereoisomerism , Catalysis
16.
Bioorg Med Chem ; 67: 116833, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35605346

ABSTRACT

Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies. The 1,2,4-triazolopyridines showed a higher oral exposure when compared to the imidazopyridines. Further modifications to the C5 substituent of the 1,2,4-triazolopyridines resulted in a new lead compound, which had improved rat IV/PO PK compared to the former lead compound GSK3739936, while maintaining antiviral potency. Structure-activity relationships (SAR) and rat pharmacokinetic profiles of this series are discussed.


Subject(s)
Anti-HIV Agents , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Allosteric Regulation , Animals , Anti-HIV Agents/pharmacology , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV-1/metabolism , Rats
17.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364410

ABSTRACT

Chalcone-1-deoxynojirimycin heterozygote (DC-5), a novel compound which was designed and synthesized in our laboratory for diabetes treatment, showed an extremely strong in vitro inhibitory activity on α-glucosidase in our previous studies. In the current research, its potential in vivo anti-diabetic effects were further investigated by integration detection and the analysis of blood glucose concentration, blood biochemical parameters, tissue section and gut microbiota of the diabetic rats. The results indicated that oral administration of DC-5 significantly reduced the fasting blood glucose and postprandial blood glucose, both in diabetic and normal rats; meanwhile, it alleviated the adverse symptoms of elevated blood lipid level and lipid metabolism disorder in diabetic rats. Furthermore, DC-5 effectively decreased the organ coefficient and alleviated the pathological changes of the liver, kidney and small intestine of the diabetic rats at the same time. Moreover, the results of 16S rDNA gene sequencing analysis suggested that DC-5 significantly increased the ratio of Firmicutes to Bacteroidetes and improved the disorder of gut microbiota in diabetic rats. In conclusion, DC-5 displayed a good therapeutic effect on the diabetic rats, and therefore had a good application prospect in hypoglycemic drugs and foods.


Subject(s)
Chalcone , Chalcones , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Rats , Animals , Blood Glucose , Diabetes Mellitus, Experimental/pathology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Chalcones/pharmacology , Chalcones/therapeutic use , Chalcone/pharmacology , Heterozygote , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy
18.
Angew Chem Int Ed Engl ; 61(9): e202114129, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34981881

ABSTRACT

Novel asymmetric mono- and dialkylation reactions of α-substituted 2,5-diketopiperazines catalyzed by new chiral spirocyclic-amide-derived triazolium organocatalysts have been developed, resulting in a range of enantioenriched 2,5-diketopiperazine derivatives containing one or two tetrasubstituted carbon stereocenters. The reactions feature high yields (up to 98%), and excellent cis-diastereo- and enantioselectivities (up to >20:1 dr, >99 % ee), and they provide a new asymmetric synthetic approach to important functionalized 2,5-diketopiperazine skeletons. Furthermore, a possible reaction mechanism was proposed based on both control experiments and extensive DFT calculations.

19.
Angew Chem Int Ed Engl ; 61(38): e202206446, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35866449

ABSTRACT

A facile benzylic alkylation of indenes and other arenes was developed from readily available primary and secondary alcohols using our newly investigated CCC pincer IrIII catalyst (SNIr-H). Excellent regioselectivity and yield (89 %) of the C3-alkylated indenes were obtained. Additionally, the challenging sp2 C-alkylation was readily accomplished. This method could be utilized for the synthesis of the analogs of a histamine H1 receptor antagonist and the functional material template molecule, indeno[2,1-a]indene. A hemilabile IrIII -dihydride intermediate was proposed based on control experiments and previous density functional theory (DFT) calculations for the borrowing hydrogen mechanism and is key to the success of this IrIII catalyst in the reduction of unactivated multi-substituted olefin intermediates.

20.
J Cell Mol Med ; 25(15): 7418-7425, 2021 08.
Article in English | MEDLINE | ID: mdl-34216182

ABSTRACT

We previously showed a hydroxamic acid-based histone deacetylase inhibitor (HDACi), compound 13, provides neuroprotection against chronic cerebral hypoperfusion (CCH) both in vitro under oxygen-glucose deprivation (OGD) conditions and in vivo under bilateral common carotid artery occlusion (BCCAO) conditions. Intriguingly, the protective effect of this HDACi is via H3K14 or H4K5 acetylation-mediated differential BDNF isoform activation. BDNF is involved in cell proliferation and differentiation in development, synaptic plasticity and in learning and memory related with receptors or synaptic proteins. B6 mice underwent BCCAO and were randomized into 4 groups; a sham without BCCAO (sham), BCCAO mice injected with DMSO (DMSO), mice injected with HDACi-compound 13 (compound 13) and mice injected with suberoylanilide hydroxamic acid (SAHA). The cortex and hippocampus of mice were harvested at 3 months after BCCAO, and levels of BDNF, AMPA receptor and dopamine receptors (D1, D2 and D3) were studied using Western blotting analysis or immunohistochemistry. We found that the AMPA receptor plays a key role in the molecular mechanism of this process by modulating HDAC. This protective effect of HDACi may be through BDNF; therefore, activation of this downstream signalling molecule, for example by AMPA receptors, could be a therapeutic target or intervention applied under CCH conditions.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dementia, Vascular/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Receptors, AMPA/metabolism , Animals , Arterial Occlusive Diseases/complications , Carotid Arteries/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylase Inhibitors/pharmacology , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL