Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38128148

ABSTRACT

The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.


Subject(s)
Aedes , Mosquito Vectors , Animals , Female , Male , Phylogeny , Mosquito Vectors/genetics , Aedes/genetics , Aedes/metabolism , RNA Splicing
2.
PLoS Genet ; 18(6): e1010280, 2022 06.
Article in English | MEDLINE | ID: mdl-35737710

ABSTRACT

Aedes albopictus is one of the most invasive insect species in the world and an effective vector for many important arboviruses. We reported previously that Ae. albopictus Nix (AalNix) is the male-determining factor of this species. However, whether AalNix alone is sufficient to initiate male development is unknown. Transgenic lines that express each of the three AalNix isoforms from the native promoter were obtained using piggyBac transformation. We verified the stable expression of AalNix isoforms in the transgenic lines and confirm that one isoform, AalNix3&4, is sufficient to convert females into fertile males (pseudo-males) that are indistinguishable from wild-type males. We also established a stable sex-converted female mosquito strain, AalNix3&4-♂4-pseudo-male. The pseudo-male mosquitoes can fly and mate normally with wild-type female, although their mating competitiveness is lower than wild-type. This work further clarifies the role of AalNix in the sex determination pathway and will facilitate the development of Ae. albopictus control strategies that rely on male-only releases such as SIT and sex-ratio distortion.


Subject(s)
Aedes , Aedes/genetics , Aedes/metabolism , Animals , Animals, Genetically Modified , Female , Introduced Species , Male , Mosquito Vectors/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reproduction
3.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273363

ABSTRACT

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Subject(s)
Aedes , Culex , Animals , Humans , Male , Phylogeny , DNA Transposable Elements/genetics , Mosquito Vectors/genetics , Culex/genetics , Aedes/genetics , Chromosomes , Evolution, Molecular
4.
Proc Natl Acad Sci U S A ; 117(30): 17702-17709, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32661163

ABSTRACT

A dominant male-determining locus (M-locus) establishes the male sex (M/m) in the yellow fever mosquito, Aedes aegyptiNix, a gene in the M-locus, was shown to be a male-determining factor (M factor) as somatic knockout of Nix led to feminized males (M/m) while transient expression of Nix resulted in partially masculinized females (m/m), with male reproductive organs but retained female antennae. It was not clear whether any of the other 29 genes in the 1.3-Mb M-locus are also needed for complete sex-conversion. Here, we report the generation of multiple transgenic lines that express Nix under the control of its own promoter. Genetic and molecular analyses of these lines provided insights unattainable from previous transient experiments. We show that the Nix transgene alone, in the absence of the M-locus, was sufficient to convert females into males with all male-specific sexually dimorphic features and male-like gene expression. The converted m/m males are flightless, unable to perform the nuptial flight required for mating. However, they were able to father sex-converted progeny when presented with cold-anesthetized wild-type females. We show that myo-sex, a myosin heavy-chain gene also in the M-locus, was required for male flight as knockout of myo-sex rendered wild-type males flightless. We also show that Nix-mediated female-to-male conversion was 100% penetrant and stable over many generations. Therefore, Nix has great potential for developing mosquito control strategies to reduce vector populations by female-to-male sex conversion, or to aid in a sterile insect technique that requires releasing only non-biting males.


Subject(s)
Aedes/genetics , Flight, Animal , Genes, Insect , Genetic Association Studies , Membrane Proteins/genetics , Sex Determination Processes/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Female , Genetic Loci , Genotype , Inheritance Patterns , Male , Penetrance , Phenotype , Promoter Regions, Genetic
5.
Cell Biol Int ; 46(12): 2075-2084, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36040750

ABSTRACT

Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is believed to be involved in many gynecological and obstetrics disorders. Nevertheless, the role of NEAT1 in polycystic ovary syndrome (PCOS) is scarcely investigated. Our study aimed to investigate the role of NEAT1, microRNA (miR)-324-3p, and bromodomain containing 3 (BRD3) in PCOS. First, 80 women with PCOS and 80 healthy (non-PCOS) women were included, and their serum hormone levels were tested. Next, the PCOS mouse model was established by dehydroepiandrosterone injection, and then NEAT1, miR-324-3p, and BRD3 expression levels were detected in the PCOS mice. Lentivirus carrying short hairpin-NEAT1 or miR-324-3p agomir was injected into the PCOS mice to determine the change in biochemical indices and pathology. Moreover, a rescue experiment was conducted, after which, the binding relationships among NEAT1, miR-324-3p, and BRD3 were analyzed. NEAT1 and BRD3 were expressed at a high level while miR-324-3p was expressed at a low level in women with PCOS and PCOS mice. Reduced levels of NEAT1 or elevated levels of miR-324-3p mitigated metabolic disorders and alleviated ovarian pathological changes in PCOS mice. Mechanistically, NEAT1 sponged miR-324-3p and miR-324-3p targeted BRD3. In the rescue experiment, elevated miR-324-3p or reduced BRD3 level reversed the effects of the enhanced NEAT1 on metabolic disorders and ovarian pathological changes in PCOS mice. NEAT1 exacerbates metabolic disorders and ovarian pathological changes in PCOS mice by downregulating miR-324-3p and upregulating BRD3. This study gives a novel direction in PCOS treatment.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , RNA, Long Noncoding , Humans , Female , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Transcription Factors/genetics
6.
BMC Biol ; 18(1): 26, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32164699

ABSTRACT

BACKGROUND: Aedes aegypti is the principal mosquito vector of Zika, dengue, and yellow fever viruses. Two subspecies of Ae. aegypti exhibit phenotypic divergence with regard to habitat, host preference, and vectorial capacity. Chromosomal inversions have been shown to play a major role in adaptation and speciation in dipteran insects and would be of great utility for studies of Ae. aegypti. However, the large and highly repetitive genome of Ae. aegypti makes it difficult to detect inversions with paired-end short-read sequencing data, and polytene chromosome analysis does not provide sufficient resolution to detect chromosome banding patterns indicative of inversions. RESULTS: To characterize chromosomal diversity in this species, we have carried out deep Illumina sequencing of linked-read (10X Genomics) libraries in order to discover inversion loci as well as SNPs. We analyzed individuals from colonies representing the geographic limits of each subspecies, one contact zone between subspecies, and a closely related sister species. Despite genome-wide SNP divergence and abundant microinversions, we do not find any inversions occurring as fixed differences between subspecies. Many microinversions are found in regions that have introgressed and have captured genes that could impact behavior, such as a cluster of odorant-binding proteins that may play a role in host feeding preference. CONCLUSIONS: Our study shows that inversions are abundant and widely shared among subspecies of Aedes aegypti and that introgression has occurred in regions of secondary contact. This library of 32 novel chromosomal inversions demonstrates the capacity for linked-read sequencing to identify previously intractable genomic rearrangements and provides a foundation for future population genetics studies in this species.


Subject(s)
Aedes/genetics , Chromosome Inversion , Genetic Introgression , Mosquito Vectors/genetics , Animals , Chromosomes , Genetic Variation , High-Throughput Nucleotide Sequencing
7.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171258

ABSTRACT

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Subject(s)
Heteroptera/genetics , Insect Proteins/genetics , Insecticide Resistance , Whole Genome Sequencing/methods , Animals , Ecosystem , Gene Transfer, Horizontal , Genome Size , Heteroptera/classification , Introduced Species , Phylogeny
8.
Genome Res ; 27(1): 133-144, 2017 01.
Article in English | MEDLINE | ID: mdl-28003436

ABSTRACT

Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted "noncoding RNAs" to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes.


Subject(s)
Genome/genetics , High-Throughput Nucleotide Sequencing/methods , Molecular Sequence Annotation , Transcriptome/genetics , Animals , Anopheles/genetics , Exons/genetics , Gene Expression Profiling , Proteome/genetics , Proteomics
10.
Proc Natl Acad Sci U S A ; 113(15): E2114-23, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035980

ABSTRACT

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Subject(s)
Anopheles/genetics , Chromosomes, Insect/genetics , Insect Vectors/genetics , Y Chromosome/genetics , Animals , Female , Malaria , Male , Phylogeny , Sequence Analysis, DNA , X Chromosome/genetics
11.
Proc Natl Acad Sci U S A ; 112(44): E5907-15, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483478

ABSTRACT

The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.


Subject(s)
Aedes/genetics , Evolution, Molecular , Genome, Insect , Aedes/classification , Aedes/physiology , Animals , Phylogeny
12.
BMC Genomics ; 18(1): 512, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28676109

ABSTRACT

BACKGROUND: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes. RESULTS: We used a bioinformatic approach to analyse the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presently available 22 mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, in which they are approximately ~10-fold more abundant than in other mosquito species analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs. CONCLUSIONS: Differences in the number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exist. Viral integrations are abundant in Ae. aegypti and Ae. albopictus, and represent a thus far underappreciated component of their genomes. Additionally, the genome locations of viral integrations and their production of piRNAs indicate a functional link between viral integrations and the piRNA pathway. These results greatly expand the breadth and complexity of small RNA-mediated regulation and suggest a role for viral integrations in antiviral defense in these two mosquito species.


Subject(s)
Aedes/genetics , Arboviruses/metabolism , RNA, Small Interfering , Virus Integration , Aedes/metabolism , Aedes/virology , Animals , Arboviruses/genetics , Culicidae/genetics , Culicidae/metabolism , Culicidae/virology , DNA, Viral , Genome, Insect , Genomics , Phylogeny
13.
BMC Biol ; 12: 27, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24731704

ABSTRACT

BACKGROUND: An initial comparative genomic study of the malaria vector Anopheles gambiae and the yellow fever mosquito Aedes aegypti revealed striking differences in the genome assembly size and in the abundance of transposable elements between the two species. However, the chromosome arms homology between An. gambiae and Ae. aegypti, as well as the distribution of genes and repetitive elements in chromosomes of Ae. aegypti, remained largely unexplored because of the lack of a detailed physical genome map for the yellow fever mosquito. RESULTS: Using a molecular landmark-guided fluorescent in situ hybridization approach, we mapped 624 Mb of the Ae. aegypti genome to mitotic chromosomes. We used this map to analyze the distribution of genes, tandem repeats and transposable elements along the chromosomes and to explore the patterns of chromosome homology and rearrangements between Ae. aegypti and An. gambiae. The study demonstrated that the q arm of the sex-determining chromosome 1 had the lowest gene content and the highest density of minisatellites. A comparative genomic analysis with An. gambiae determined that the previously proposed whole-arm synteny is not fully preserved; a number of pericentric inversions have occurred between the two species. The sex-determining chromosome 1 had a higher rate of genome rearrangements than observed in autosomes 2 and 3 of Ae. aegypti. CONCLUSIONS: The study developed a physical map of 45% of the Ae. aegypti genome and provided new insights into genomic composition and evolution of Ae. aegypti chromosomes. Our data suggest that minisatellites rather than transposable elements played a major role in rapid evolution of chromosome 1 in the Aedes lineage. The research tools and information generated by this study contribute to a more complete understanding of the genome organization and evolution in mosquitoes.


Subject(s)
Aedes/genetics , Base Composition/genetics , Chromosomes, Insect/genetics , Contig Mapping/methods , Evolution, Molecular , Genome, Insect/genetics , Physical Chromosome Mapping/methods , Animals , Anopheles/genetics , Chromosomes, Artificial, Bacterial/genetics , DNA Transposable Elements/genetics , Gene Order/genetics , Gene Rearrangement , Genes, Insect/genetics , In Situ Hybridization, Fluorescence , Microsatellite Repeats/genetics , Synteny/genetics
14.
BMC Dev Biol ; 14: 15, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24707823

ABSTRACT

BACKGROUND: Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. RESULTS: A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. CONCLUSIONS: Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed.


Subject(s)
Aedes/embryology , Egg Proteins/genetics , Egg Proteins/metabolism , RNA, Messenger/analysis , Aedes/classification , Aedes/genetics , Aedes/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Developmental , Genome, Insect , Insect Proteins/genetics , Insect Proteins/metabolism , Mass Spectrometry , Proteomics
15.
PLoS Pathog ; 8(10): e1002960, 2012.
Article in English | MEDLINE | ID: mdl-23055932

ABSTRACT

Understanding phylogenetic relationships within species complexes of disease vectors is crucial for identifying genomic changes associated with the evolution of epidemiologically important traits. However, the high degree of genetic similarity among sibling species confounds the ability to determine phylogenetic relationships using molecular markers. The goal of this study was to infer the ancestral-descendant relationships among malaria vectors and nonvectors of the Anopheles gambiae species complex by analyzing breakpoints of fixed chromosomal inversions in ingroup and several outgroup species. We identified genes at breakpoints of fixed overlapping chromosomal inversions 2Ro and 2Rp of An. merus using fluorescence in situ hybridization, a whole-genome mate-paired sequencing, and clone sequencing. We also mapped breakpoints of a chromosomal inversion 2La (common to An. merus, An. gambiae, and An. arabiensis) in outgroup species using a bioinformatics approach. We demonstrated that the "standard" 2R+(p) arrangement and "inverted" 2Ro and 2La arrangements are present in outgroup species Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The data indicate that the ancestral species of the An. gambiae complex had the 2Ro, 2R+(p), and 2La chromosomal arrangements. The "inverted" 2Ro arrangement uniquely characterizes a malaria vector An. merus as the basal species in the complex. The rooted chromosomal phylogeny implies that An. merus acquired the 2Rp inversion and that its sister species An. gambiae acquired the 2R+(o) inversion from the ancestral species. The karyotype of nonvectors An. quadriannulatus A and B was derived from the karyotype of the major malaria vector An. gambiae. We conclude that the ability to effectively transmit human malaria had originated repeatedly in the complex. Our findings also suggest that saltwater tolerance originated first in An. merus and then independently in An. melas. The new chromosomal phylogeny will facilitate identifying the association of evolutionary genomic changes with epidemiologically important phenotypes.


Subject(s)
Anopheles/classification , Anopheles/genetics , Chromosome Inversion/genetics , Chromosomes/genetics , Insect Vectors/genetics , Malaria/transmission , Animals , Biological Evolution , Chromosome Breakpoints , Chromosome Mapping , Culex/genetics , Genetic Variation , Genome, Insect , Karyotyping , Molecular Sequence Data , Phenotype , Phylogeny , Sequence Analysis, DNA
16.
Int J Biol Macromol ; 268(Pt 1): 131704, 2024 May.
Article in English | MEDLINE | ID: mdl-38670198

ABSTRACT

Mosquitoes form a vital group of vector insects, which can transmit various diseases and filarial worms. The cuticle is a critical structure that protects mosquitoes from adverse environmental conditions and penetration resistance. Thus, cuticle proteins can be used as potential targets for controlling the mosquito population. In the present study, we found that AaCPR100A is a structural protein in the soft cuticle, which has flexibility and elasticity allowing insects to move or fly freely, of Aedes aegypti. RNA interference (RNAi) of AaCPR100A caused high mortality in Aedes aegypti larvae and adults and significantly decreased the egg hatching rate. Transmission electron microscopy (TEM) analysis revealed that the larval microstructure had no recognizable endocuticle in AaCPR100A-deficient mosquitoes. A yeast two-hybrid assay was performed to screen proteins interacting with AaCPR100A. We verified that the G12-like protein had the strongest interaction with AaCPR100A using yeast two-hybrid and GST pull-down assays. Knockdown of G12-like transcription resulted in high mortality in Ae. aegypti larvae, but not in adults. Interestingly, RNAi of G12-like rescued the high mortality of adults caused by decreased AaCPR100A expression. Additionally, adults treated with G12-like dsRNA were found to be sensitive to low temperature, and their eggshell formation and hatching were decreased. Overall, our results demonstrated that G12-like may interacts with AaCPR100A, and both G12-like and AaCPR100A are involved in Ae. aegypti cuticle development and eggshell formation. AaCPR100A and G12-like can thus be considered newly potential targets for controlling the Ae. aegypti mosquito.


Subject(s)
Aedes , Insect Proteins , Animals , Aedes/genetics , Aedes/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/metabolism , Larva/growth & development , RNA Interference , Protein Binding , Two-Hybrid System Techniques
17.
BMC Genomics ; 14: 273, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23617698

ABSTRACT

BACKGROUND: Y chromosomes are responsible for the initiation of male development, male fertility, and other male-related functions in diverse species. However, Y genes are rarely characterized outside a few model species due to the arduous nature of studying the repeat-rich Y. RESULTS: The chromosome quotient (CQ) is a novel approach to systematically discover Y chromosome genes. In the CQ method, genomic DNA from males and females is sequenced independently and aligned to candidate reference sequences. The female to male ratio of the number of alignments to a reference sequence, a parameter called the chromosome quotient (CQ), is used to determine whether the sequence is Y-linked. Using the CQ method, we successfully identified known Y sequences from Homo sapiens and Drosophila melanogaster. The CQ method facilitated the discovery of Y chromosome sequences from the malaria mosquitoes Anopheles stephensi and An. gambiae. Comparisons to transcriptome sequence data with blastn led to the discovery of six Anopheles Y genes, three from each species. All six genes are expressed in the early embryo. Two of the three An. stephensi Y genes were recently acquired from the autosomes or the X. Although An. stephensi and An. gambiae belong to the same subgenus, we found no evidence of Y genes shared between the species. CONCLUSIONS: The CQ method can reliably identify Y chromosome sequences using the ratio of alignments from male and female sequence data. The CQ method is widely applicable to species with fragmented genome assemblies produced from next-generation sequencing data. Analysis of the six Y genes characterized in this study indicates rapid Y chromosome evolution between An. stephensi and An. gambiae. The Anopheles Y genes discovered by the CQ method provide unique markers for population and phylogenetic analysis, and opportunities for novel mosquito control measures through the manipulation of sexual dimorphism and fertility.


Subject(s)
Anopheles/genetics , Genes, Insect/genetics , Sequence Analysis , Y Chromosome/genetics , Animals , Evolution, Molecular , Female , Gene Duplication , Gene Expression Profiling , Genomics , Male , Sequence Homology, Nucleic Acid
18.
Front Microbiol ; 14: 1189176, 2023.
Article in English | MEDLINE | ID: mdl-37378291

ABSTRACT

Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related alphaviruses that cause acute febrile illness accompanied by an incapacitating polyarthralgia that can persist for years following initial infection. In conjunction with sporadic outbreaks throughout the sub-tropical regions of the Americas, increased global travel to CHIKV- and MAYV-endemic areas has resulted in imported cases of MAYV, as well as imported cases and autochthonous transmission of CHIKV, within the United States and Europe. With increasing prevalence of CHIKV worldwide and MAYV throughout the Americas within the last decade, a heavy focus has been placed on control and prevention programs. To date, the most effective means of controlling the spread of these viruses is through mosquito control programs. However, current programs have limitations in their effectiveness; therefore, novel approaches are necessary to control the spread of these crippling pathogens and lessen their disease burden. We have previously identified and characterized an anti-CHIKV single-domain antibody (sdAb) that potently neutralizes several alphaviruses including Ross River virus and Mayaro virus. Given the close antigenic relationship between MAYV and CHIKV, we formulated a single defense strategy to combat both emerging arboviruses: we generated transgenic Aedes aegypti mosquitoes that express two camelid-derived anti-CHIKV sdAbs. Following an infectious bloodmeal, we observed significant reduction in CHIKV and MAYV replication and transmission potential in sdAb-expressing transgenic compared to wild-type mosquitoes; thus, this strategy provides a novel approach to controlling and preventing outbreaks of these pathogens that reduce quality of life throughout the tropical regions of the world.

19.
Nat Commun ; 14(1): 2292, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085529

ABSTRACT

The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.


Subject(s)
Culicidae , Filariasis , Animals , Female , Humans , Male , Culicidae/genetics , Drosophila , Family , Mosquito Vectors/genetics , Sex Differentiation
20.
BMC Genomics ; 13: 366, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22857387

ABSTRACT

BACKGROUND: Malaria is caused by Plasmodium parasites, which are transmitted via the bites of infected Anopheline mosquitoes. Midgut invasion is a major bottleneck for Plasmodium development inside the mosquito vectors. Malaria parasites in the midgut are surrounded by a hostile environment rich in digestive enzymes, while a rapidly responding immune system recognizes Plasmodium ookinetes and recruits killing factors from the midgut and surrounding tissues, dramatically reducing the population of invading ookinetes before they can successfully traverse the midgut epithelium. Understanding molecular details of the parasite-vector interactions requires precise measurement of nascent protein synthesis in the mosquito during Plasmodium infection. Current expression profiling primarily monitors alterations in steady-state levels of mRNA, but does not address the equally critical issue of whether the proteins encoded by the mRNAs are actually synthesized. RESULTS: In this study, we used sucrose density gradient centrifugation to isolate actively translating Anopheles gambiae mRNAs based upon their association with polyribosomes (polysomes). The proportion of individual gene transcripts associated with polysomes, which is determined by RNA deep sequencing, reflects mRNA translational status. This approach led to identification of 1017 mosquito transcripts that were primarily regulated at the translational level after ingestion of Plasmodium falciparum-infected blood. Caspar, a negative regulator of the NF-kappaB transcription factor Rel2, appears to be substantially activated at the translational levels during Plasmodium infection. In addition, transcripts of Dcr1, Dcr2 and Drosha, which are involved in small RNA biosynthesis, exhibited enhanced associations with polysomes after P. falciparum challenge. This observation suggests that mosquito microRNAs may play an important role in reactions against Plasmodium invasion. CONCLUSIONS: We analyzed both total cellular mRNAs and mRNAs that are associated with polysomes to simultaneously monitor transcriptomes and nascent protein synthesis in the mosquito. This approach provides more accurate information regarding the rate of protein synthesis, and identifies some mosquito factors that might have gone unrecognized because expression of these proteins is regulated mainly at the translational level rather than at the transcriptional level after mosquitoes ingest a Plasmodium-infected blood meal.


Subject(s)
Anopheles/genetics , Intestinal Mucosa/metabolism , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Anopheles/metabolism , Anopheles/parasitology , Gene Expression Regulation , Host-Parasite Interactions/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , MicroRNAs/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL