Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Anim Ecol ; 93(4): 488-500, 2024 04.
Article in English | MEDLINE | ID: mdl-38459628

ABSTRACT

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Subject(s)
Ecosystem , Homing Behavior , Animals , Mammals , Temperature
2.
Conserv Biol ; 38(1): e14152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37551763

ABSTRACT

New Guinea is one of the last regions in the world with vast pristine areas and is home to many endemic species. However, extensive road development plans threaten the island's biodiversity. We quantified habitat fragmentation due to existing and planned roads for 139 terrestrial mammal species in New Guinea. For each species, we calculated the equivalent connected area (ECA) of habitat, a metric that takes into account the area and connectivity of habitat patches in 3 situations: no roads (baseline situation), existing roads (current), and existing and planned roads combined (future). We assessed the effect of roads as the proportion of the ECA remaining in the current and future situations relative to the baseline. To examine whether there were patterns in these relative ECA values, we fitted beta-regression models relating these values to 4 species characteristics: taxonomic order, body mass, diet, and International Union for the Conservation of Nature Red List status. On average across species, current ECA was 89% (SD 12) of baseline ECA. Shawmayer's coccymys (Coccymys shawmayeri) had the lowest amount of current ECA relative to the baseline (53%). In the future situation, the average remaining ECA was 71% (SD 20) of baseline ECA. Future remaining ECA was below 50% of the baseline for 28 species. The montane soft-furred paramelomys (Paramelomys mollis) had the lowest future ECA relative to the baseline (36%). In general, currently nonthreatened carnivorous species with a large body mass had the greatest reductions of ECA in the future situation. In conclusion, future road development plans imply extensive additional habitat fragmentation for a large number of terrestrial mammal species in New Guinea. It is therefore important to limit the impact of planned roads, for example, by reconsidering the location of planned roads that intersect habitat of the most threatened species, or by the implementation of mitigation measures such as underpasses.


Impacto de las carreteras planeadas y existentes sobre el hábitat de mamíferos terrestres en Nueva Guinea Resumen Nueva Guinea es una de las últimas regiones del mundo con zonas vírgenes extensas que alberga muchas especies endémicas. Sin embargo, los planes extensivos de desarrollo de carreteras amenazan la biodiversidad de la isla. Cuantificamos la fragmentación del hábitat causada por las carreteras existentes y previstas para 139 especies de mamíferos terrestres de Nueva Guinea. Para cada especie, calculamos el área conectada equivalente (ACE) del hábitat, una medida que considera el área y la conectividad de los fragmentos de hábitat en tres situaciones: sin carreteras (situación de referencia), carreteras existentes (actual) y la combinación de carreteras existentes y previstas (futuro). Evaluamos el efecto de las carreteras como la proporción de ACE que quedaba en las situaciones actual y futura en relación con la situación de referencia. Para examinar si existían patrones en estos valores relativos de ECA, ajustamos modelos de regresión beta relacionando estos valores con cuatro características de las especies: orden taxonómico, masa corporal, dieta y estado en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza. En promedio para todas las especies, la ACE actual fue 89% (DE 12) de la ACE basal. La especie Coccymys shawmayeri presentó la menor cantidad de ACE actual en relación con la base de referencia (53%). En la situación futura, la media de ACE restante fue del 71% (DE 20) de la ACE de referencia. La ACE restante futura fue inferior al 50% de la línea de base para 28 especies. La especie Paramelomys mollis tuvo la ACE futura más baja en relación con la línea base (36%). En general, las especies carnívoras que no están amenazadas actualmente y tienen una masa corporal grande tuvieron la mayor reducción de ACE en la situación futura. Para concluir, la futura construcción de carreteras implica una extensa fragmentación de hábitat adicional para un gran número de especies de mamíferos terrestres en Nueva Guinea. Por esto es importante limitar el impacto de las carreteras planeadas, por ejemplo, reconsiderando la ubicación de las carreteras que cruzan el hábitat de las especies más amenazadas o implementando medidas de mitigación como los pasos subterráneos.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , New Guinea , Mammals , Biodiversity
3.
Ecol Lett ; 24(7): 1408-1419, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33960589

ABSTRACT

One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this relationship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that range sizes of terrestrial non-volant mammals at the individual and species level show contrasting relationships with two ecological niche dimensions: diet and habitat breadth. While average individual home range size appears to be mainly shaped by the interplay of diet niche breadth and body mass, species geographical range size is primarily related to habitat niche breadth but not to diet niche breadth. Our findings suggest that individual home range size is shaped by the trade-off between energetic requirements, movement capacity and trophic specialisation, whereas species geographical range size is related to the ability to persist under various environmental conditions.


Subject(s)
Diet , Ecosystem , Animals , Geography
4.
Ecol Lett ; 24(12): 2576-2585, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34476879

ABSTRACT

Animals require a certain amount of habitat to persist and thrive, and habitat loss is one of the most critical drivers of global biodiversity decline. While habitat requirements have been predicted by relationships between species traits and home-range size, little is known about constraints imposed by environmental conditions and human impacts on a global scale. Our meta-analysis of 395 vertebrate species shows that global climate gradients in temperature and precipitation exert indirect effects via primary productivity, generally reducing space requirements. Human pressure, however, reduces realised space use due to ensuing limitations in available habitat, particularly for large carnivores. We show that human pressure drives extinction risk by increasing the mismatch between space requirements and availability. We use large-scale climate gradients to predict current species extinction risk across global regions, which also offers an important tool for predicting future extinction risk due to ongoing space loss and climate change.


Subject(s)
Biodiversity , Extinction, Biological , Animals , Climate Change , Ecosystem , Humans , Temperature
5.
Conserv Biol ; 34(4): 1017-1028, 2020 08.
Article in English | MEDLINE | ID: mdl-32362060

ABSTRACT

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.


Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15% y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.


Subject(s)
Conservation of Natural Resources , Mammals , Animals , Body Size , Endangered Species , Homing Behavior , Humans
6.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25377460

ABSTRACT

Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.


Subject(s)
Food Chain , Mammals/physiology , Predatory Behavior , Animals , Aquatic Organisms/physiology , Body Size , Carnivory , Diet , Environment , Herbivory , Mammals/anatomy & histology , Mammals/classification , Phylogeny
7.
Biol Rev Camb Philos Soc ; 99(4): 1242-1260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38437713

ABSTRACT

Animal migration has fascinated scientists and the public alike for centuries, yet migratory animals are facing diverse threats that could lead to their demise. The Anthropocene is characterised by the reality that humans are the dominant force on Earth, having manifold negative effects on biodiversity and ecosystem function. Considerable research focus has been given to assessing anthropogenic impacts on the numerical abundance of species/populations, whereas relatively less attention has been devoted to animal migration. However, there are clear linkages, for example, where human-driven impacts on migration behaviour can lead to population/species declines or even extinction. Here, we explore anthropogenic threats to migratory animals (in all domains - aquatic, terrestrial, and aerial) using International Union for the Conservation of Nature (IUCN) Threat Taxonomy classifications. We reveal the diverse threats (e.g. human development, disease, invasive species, climate change, exploitation, pollution) that impact migratory wildlife in varied ways spanning taxa, life stages and type of impact (e.g. from direct mortality to changes in behaviour, health, and physiology). Notably, these threats often interact in complex and unpredictable ways to the detriment of wildlife, further complicating management. Fortunately, we are beginning to identify strategies for conserving and managing migratory animals in the Anthropocene. We provide a set of strategies that, if embraced, have the potential to ensure that migratory animals, and the important ecological functions sustained by migration, persist.


Subject(s)
Animal Migration , Conservation of Natural Resources , Animals , Humans , Human Activities , Climate Change , Ecosystem , Biodiversity
8.
Nat Ecol Evol ; 7(9): 1362-1372, 2023 09.
Article in English | MEDLINE | ID: mdl-37550509

ABSTRACT

As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.


Subject(s)
Biodiversity , Conservation of Natural Resources , Environment , Human Activities , Transportation , Earth, Planet , Animals, Wild , Ecosystem
9.
Science ; 380(6649): 1059-1064, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37289888

ABSTRACT

COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.


Subject(s)
Animal Migration , Animals, Wild , COVID-19 , Mammals , Quarantine , Animals , Humans , Animals, Wild/physiology , Animals, Wild/psychology , COVID-19/epidemiology , Mammals/physiology , Mammals/psychology , Movement
10.
Science ; 359(6374): 466-469, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29371471

ABSTRACT

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.


Subject(s)
Animal Migration , Human Activities , Mammals , Animals , Geographic Information Systems , Humans
11.
Nat Ecol Evol ; 6(7): 853-854, 2022 07.
Article in English | MEDLINE | ID: mdl-35513578

Subject(s)
Mammals , Animals
12.
Evolution ; 71(2): 249-260, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27882540

ABSTRACT

Previous studies of the vocalization frequencies of mammals have suggested that it is either body mass or environment that drives these frequencies. Using 193 species across the globe from the terrestrial and aquatic environments and a model selection approach, we identified that the best-supported model for minimum and maximum frequencies for vocalization included both body mass and environment. The minimum frequencies of vocalizations of species from all environments retained the influence of body mass. For maximum frequency however, aquatic species are released from such a trend with body mass having little constraint on frequencies. Surprisingly, phylogeny did not have a strong impact on the evolution of the maximum frequency of mammal vocalizations, largely due to the pinniped species divergence of frequency from their carnivoran relatives. We demonstrate that the divergence of signal frequencies in mammals has arisen from the need to adapt to their environment.


Subject(s)
Biological Evolution , Body Size , Environment , Vocalization, Animal , Animals , Female , Male , Mammals , Phylogeny , Vocalization, Animal/classification
14.
PLoS One ; 9(8): e106402, 2014.
Article in English | MEDLINE | ID: mdl-25162695

ABSTRACT

Predator-prey body mass relationships are a vital part of food webs across ecosystems and provide key information for predicting the susceptibility of carnivore populations to extinction. Despite this, there has been limited research on the minimum and maximum prey size of mammalian carnivores. Without information on large-scale patterns of prey mass, we limit our understanding of predation pressure, trophic cascades and susceptibility of carnivores to decreasing prey populations. The majority of studies that examine predator-prey body mass relationships focus on either a single or a subset of mammalian species, which limits the strength of our models as well as their broader application. We examine the relationship between predator body mass and the minimum, maximum and range of their prey's body mass across 108 mammalian carnivores, from weasels to baleen whales (Carnivora and Cetacea). We test whether mammals show a positive relationship between prey and predator body mass, as in reptiles and birds, as well as examine how environment (aquatic and terrestrial) and phylogenetic relatedness play a role in this relationship. We found that phylogenetic relatedness is a strong driver of predator-prey mass patterns in carnivorous mammals and accounts for a higher proportion of variance compared with the biological drivers of body mass and environment. We show a positive predator-prey body mass pattern for terrestrial mammals as found in reptiles and birds, but no relationship for aquatic mammals. Our results will benefit our understanding of trophic interactions, the susceptibility of carnivores to population declines and the role of carnivores within ecosystems.


Subject(s)
Carnivory/physiology , Mammals/physiology , Models, Statistical , Predatory Behavior/physiology , Animals , Aquatic Organisms , Body Size , Ecosystem , Food Chain , Phylogeny , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL