Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Theor Popul Biol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925486

ABSTRACT

Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many (≥ 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.

2.
Ecol Lett ; 26(4): 540-548, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36756864

ABSTRACT

Heterogeneity among individuals in fitness components is what selection acts upon. Evolutionary theories predict that selection in constant environments acts against such heterogeneity. But observations reveal substantial non-genetic and also non-environmental variability in phenotypes. Here, we examine whether there is a relationship between selection pressure and phenotypic variability by analysing structured population models based on data from a large and diverse set of species. Our findings suggest that non-genetic, non-environmental variation is in general neither truly neutral, selected for, nor selected against. We find much variations among species and populations within species, with mean patterns suggesting nearly neutral evolution of life-course variability. Populations that show greater diversity of life courses do not show, in general, increased or decreased population growth rates. Our analysis suggests we are only at the beginning of understanding the evolution and maintenance of non-genetic non-environmental variation.


Subject(s)
Adaptation, Physiological , Biological Evolution , Phenotype , Selection, Genetic
3.
J Anim Ecol ; 92(7): 1404-1415, 2023 07.
Article in English | MEDLINE | ID: mdl-37190852

ABSTRACT

Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane ( ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary years ρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.


Subject(s)
Cyclonic Storms , Life History Traits , Animals , Macaca mulatta , Population Dynamics , Reproduction
4.
Ecol Lett ; 25(9): 1999-2008, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35925997

ABSTRACT

Iteroparous species may reproduce at many different ages, resulting in a reproductive dispersion that affects the damping of population perturbations, and varies among life histories. Since generation time ( T c ) is known to capture aspects of life-history variation, such as life-history speed, does T c also determine reproductive dispersion ( S ) or damping time ( τ )? Using phylogenetically corrected analyses on 633 species of animals and plants, we find, firstly, that reproductive dispersion S scales isometrically with T c . Secondly, and unexpectedly, we find that the damping time ( τ ) does not scale isometrically with generation time, but instead changes only as T c b with b < 1 (also, there is a similar scaling with S ). This non-isometric scaling implies a novel demographic contrast: increasing generation times correspond to a proportional increase in reproductive dispersion, but only to a slower increase in the damping time. Thus, damping times are partly decoupled from the slow-fast continuum, and are determined by factors other than allometric constraints.


Subject(s)
Life History Traits , Reproduction , Animals , Plants
5.
Ecol Lett ; 24(7): 1328-1340, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33904254

ABSTRACT

The lifetime reproductive success (LRS) of individuals is affected by random events such as death, realized growth or realized reproduction, and the outcomes of these events can differ even when individuals have identical probabilities. Another source of randomness arises when these probabilities also change over time in variable environments. For structured populations in stochastic environments, we extend our recent method to determine how birth environment and birth stage determine the random distribution of the LRS. Our results provide a null model that quantifies effects on LRS of just the birth size or stage. Using Roe deer Capreolus capreolus as a case study, we show that the effect of an individual's birth environment on LRS varies with the frequency of environments and their temporal autocorrelation, and that lifetime performance is affected by changes in the pattern of environmental states expected as a result of climate change.


Subject(s)
Deer , Animals , Climate Change , Reproduction
6.
Nature ; 526(7572): 249-52, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26390152

ABSTRACT

The Trivers-Willard theory proposes that the sex ratio of offspring should vary with maternal condition when it has sex-specific influences on offspring fitness. In particular, mothers in good condition in polygynous and dimorphic species are predicted to produce an excess of sons, whereas mothers in poor condition should do the opposite. Despite the elegance of the theory, support for it has been limited. Here we extend and generalize the Trivers-Willard theory to explain the disparity between predictions and observations of offspring sex ratio. In polygynous species, males typically have higher mortality rates, different age-specific reproductive schedules and more risk-prone life history tactics than females; however, these differences are not currently incorporated into the Trivers-Willard theory. Using two-sex models parameterized with data from free-living mammal populations with contrasting levels of sex differences in demography, we demonstrate how sex differences in life history traits over the entire lifespan can lead to a wide range of sex allocation tactics, and show that correlations between maternal condition and offspring sex ratio alone are insufficient to conclude that mothers adaptively adjust offspring sex ratio.


Subject(s)
Behavior, Animal/physiology , Models, Biological , Mortality , Mothers , Reproduction/physiology , Sex Characteristics , Sex Ratio , Adaptation, Biological/physiology , Aging/physiology , Animals , Female , Male , Reproducibility of Results , Risk-Taking , Sciuridae/physiology , Sheep/physiology
7.
Proc Natl Acad Sci U S A ; 115(44): 11209-11214, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30327342

ABSTRACT

Old-age mortality decline has driven recent increases in lifespans, but there is no agreement about trends in the age pattern of old-age deaths. Some argue that old-age deaths should become compressed at advanced ages, others argue that old-age deaths should become more dispersed with age, and yet others argue that old-age deaths are consistent with little change in dispersion. However, direct analysis of old-age deaths presents unusual challenges: Death rates at the oldest ages are always noisy, published life tables must assume an asymptotic age pattern of deaths, and the definition of "old-age" changes as lives lengthen. Here we use robust percentile-based methods to overcome some of these challenges and show, for five decades in 20 developed countries, that old-age survival follows an advancing front, like a traveling wave. The front lies between the 25th and 90th percentiles of old-age deaths, advancing with nearly constant long-term shape but annual fluctuations in speed. The existence of this front leads to several predictions that we verify, e.g., that advances in life expectancy at age 65 y are highly correlated with the advance of the 25th percentile, but not with distances between higher percentiles. Our unexpected result has implications for biological hypotheses about human aging and for future mortality change.


Subject(s)
Life Expectancy/trends , Mortality/trends , Aged , Cause of Death , Death , Female , Forecasting , Global Health/statistics & numerical data , Humans , Life Tables , Male
8.
Ecol Lett ; 23(5): 811-820, 2020 May.
Article in English | MEDLINE | ID: mdl-32090452

ABSTRACT

Fluctuating population density in stochastic environments can contribute to maintain life-history variation within populations via density-dependent selection. We used individual-based data from a population of Soay sheep to examine variation in life-history strategies at high and low population density. We incorporated life-history trade-offs among survival, reproduction and body mass growth into structured population models and found support for the prediction that different life-history strategies are optimal at low and high population densities. Shorter generation times and lower asymptotic body mass were selected for in high-density environments even though heavier individuals had higher probabilities to survive and reproduce. In contrast, greater asymptotic body mass and longer generation times were optimal at low population density. If populations fluctuate between high density when resources are scarce, and low densities when they are abundant, the variation in density will generate fluctuating selection for different life-history strategies, that could act to maintain life-history variation.


Subject(s)
Biological Evolution , Life History Traits , Animals , Population Density , Population Dynamics , Reproduction , Sheep
9.
Ecol Lett ; 23(4): 748-756, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32043827

ABSTRACT

Lifetime reproductive performance is quantified here by the LRS (lifetime reproductive success), the random number of offspring an individual produces over its lifetime. Many field studies find that distributions of LRS among individuals are non-normal, zero-inflated and highly skewed. These results beg the question, what is the distribution of LRS predicted by demographic models when the only source of randomness is demographic stochasticity? Here we present the first exact analysis of the probability distribution of LRS for species described by age + stage models; our analysis starts with estimated vital rates. We illustrate with three examples: the Hadza, human hunter-foragers (age-only), the evergreen tree Tsuga canadensis (stage-only) and Roe deer, Capreolus capreolus (age + stage). For each we obtain the exact distribution of LRS, but also calculate and discuss the first three moments. Our results point to important questions about how such LRS distributions affect natural selection, and life history evolution.


Subject(s)
Deer , Reproduction , Animals , Humans , Selection, Genetic
10.
Theor Popul Biol ; 133: 159-167, 2020 06.
Article in English | MEDLINE | ID: mdl-31958474

ABSTRACT

Individuals differ in their life courses, but how this diversity is generated, how it has evolved and how it is maintained is less understood. However, this understanding is crucial to comprehend evolutionary and ecological population dynamics. In structured populations, individual life courses represent sequences of stages that end in death. These life course trajectories or sequences can be described by a Markov chain and individuals diversify over the course of their lives by transitioning through diverse discrete stages. The rate at which stage sequences diversify with age can be quantified by the population entropy of a Markov chain. Here, we derive sensitivities of the population entropy of a Markov chain to identify which stage transitions generate - or contribute - most to diversification in stage sequences, i.e. life courses. We then use these sensitivities to reveal potential selective forces on the dynamics of life courses. To do so we correlated the sensitivity of each matrix element (stage transition) with respect to the population entropy, to its sensitivity with respect to fitness λ, the population growth rate. Positive correlation between the two sensitivities would suggest that the stage transitions that selection has acted most strongly on (high sensitivities with respect to λ) are also those that contributed most to the diversification of life courses. Using an illustrative example on a seabird population, the Thick-billed Murres on Coats Island, that is structured by reproductive stages, we show that the most influential stage transitions for diversification of life courses are not correlated with the most influential transitions for population growth. Our finding suggests that observed diversification in life courses is neutral rather than adaptive, note this does not imply that the life histories themselves are not adaptive. We are at an early stage of understanding how individual level dynamics shape ecological and evolutionary dynamics, and many discoveries await.


Subject(s)
Biological Evolution , Reproduction , Entropy , Humans , Markov Chains , Population Dynamics
11.
PLoS Med ; 16(3): e1002757, 2019 03.
Article in English | MEDLINE | ID: mdl-30861006

ABSTRACT

BACKGROUND: Despite the sharp decline in global under-5 deaths since 1990, uneven progress has been achieved across and within countries. In sub-Saharan Africa (SSA), the Millennium Development Goals (MDGs) for child mortality were met only by a few countries. Valid concerns exist as to whether the region would meet new Sustainable Development Goals (SDGs) for under-5 mortality. We therefore examine further sources of variation by assessing age patterns, trends, and forecasts of mortality rates. METHODS AND FINDINGS: Data came from 106 nationally representative Demographic and Health Surveys (DHSs) with full birth histories from 31 SSA countries from 1990 to 2017 (a total of 524 country-years of data). We assessed the distribution of age at death through the following new demographic analyses. First, we used a direct method and full birth histories to estimate under-5 mortality rates (U5MRs) on a monthly basis. Second, we smoothed raw estimates of death rates by age and time by using a two-dimensional P-Spline approach. Third, a variant of the Lee-Carter (LC) model, designed for populations with limited data, was used to fit and forecast age profiles of mortality. We used mortality estimates from the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) to adjust, validate, and minimize the risk of bias in survival, truncation, and recall in mortality estimation. Our mortality model revealed substantive declines of death rates at every age in most countries but with notable differences in the age patterns over time. U5MRs declined from 3.3% (annual rate of reduction [ARR] 0.1%) in Lesotho to 76.4% (ARR 5.2%) in Malawi, and the pace of decline was faster on average (ARR 3.2%) than that observed for infant (IMRs) (ARR 2.7%) and neonatal (NMRs) (ARR 2.0%) mortality rates. We predict that 5 countries (Kenya, Rwanda, Senegal, Tanzania, and Uganda) are on track to achieve the under-5 sustainable development target by 2030 (25 deaths per 1,000 live births), but only Rwanda and Tanzania would meet both the neonatal (12 deaths per 1,000 live births) and under-5 targets simultaneously. Our predicted NMRs and U5MRs were in line with those estimated by the UN IGME by 2030 and 2050 (they overlapped in 27/31 countries for NMRs and 22 for U5MRs) and by the Institute for Health Metrics and Evaluation (IHME) by 2030 (26/31 and 23/31, respectively). This study has a number of limitations, including poor data quality issues that reflected bias in the report of births and deaths, preventing reliable estimates and predictions from a few countries. CONCLUSIONS: To our knowledge, this study is the first to combine full birth histories and mortality estimates from external reliable sources to model age patterns of under-5 mortality across time in SSA. We demonstrate that countries with a rapid pace of mortality reduction (ARR ≥ 3.2%) across ages would be more likely to achieve the SDG mortality targets. However, the lower pace of neonatal mortality reduction would prevent most countries from achieving those targets: 2 countries would reach them by 2030, 13 between 2030 and 2050, and 13 after 2050.


Subject(s)
Child Mortality/trends , Health Surveys/trends , Infant Mortality/trends , Models, Theoretical , Africa South of the Sahara/epidemiology , Age Distribution , Child, Preschool , Female , Forecasting/methods , Health Surveys/methods , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Lesotho/epidemiology , Malawi/epidemiology , Male , Rwanda/epidemiology , Senegal/epidemiology , Tanzania/epidemiology , Uganda/epidemiology
12.
Proc Natl Acad Sci U S A ; 113(30): 8420-3, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27402750

ABSTRACT

Efforts to understand the dramatic declines in mortality over the past century have focused on life expectancy. However, understanding changes in disparity in age of death is important to understanding mechanisms of mortality improvement and devising policy to promote health equity. We derive a novel decomposition of variance in age of death, a measure of inequality, and apply it to cause-specific contributions to the change in variance among the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) from 1950 to 2010. We find that the causes of death that contributed most to declines in the variance are different from those that contributed most to increase in life expectancy; in particular, they affect mortality at younger ages. We also find that, for two leading causes of death [cancers and cardiovascular disease (CVD)], there are no consistent relationships between changes in life expectancy and variance either within countries over time or between countries. These results show that promoting health at younger ages is critical for health equity and that policies to control cancer and CVD may have differing implications for equity.


Subject(s)
Cardiovascular Diseases/mortality , Cause of Death , Health Status Disparities , Life Expectancy , Neoplasms/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Canada , Child , Child, Preschool , Female , France , Germany , Humans , Infant , Infant, Newborn , Italy , Japan , Male , Middle Aged , Mortality/trends , United Kingdom , United States
13.
Proc Natl Acad Sci U S A ; 113(1): E61-70, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26699465

ABSTRACT

Genome-wide association studies (GWASs) seek to understand the relationship between complex phenotype(s) (e.g., height) and up to millions of single-nucleotide polymorphisms (SNPs). Early analyses of GWASs are commonly believed to have "missed" much of the additive genetic variance estimated from correlations between relatives. A more recent method, genome-wide complex trait analysis (GCTA), obtains much higher estimates of heritability using a model of random SNP effects correlated between genotypically similar individuals. GCTA has now been applied to many phenotypes from schizophrenia to scholastic achievement. However, recent studies question GCTA's estimates of heritability. Here, we show that GCTA applied to current SNP data cannot produce reliable or stable estimates of heritability. We show first that GCTA depends sensitively on all singular values of a high-dimensional genetic relatedness matrix (GRM). When the assumptions in GCTA are satisfied exactly, we show that the heritability estimates produced by GCTA will be biased and the standard errors will likely be inaccurate. When the population is stratified, we find that GRMs typically have highly skewed singular values, and we prove that the many small singular values cannot be estimated reliably. Hence, GWAS data are necessarily overfit by GCTA which, as a result, produces high estimates of heritability. We also show that GCTA's heritability estimates are sensitive to the chosen sample and to measurement errors in the phenotype. We illustrate our results using the Framingham dataset. Our analysis suggests that results obtained using GCTA, and the results' qualitative interpretations, should be interpreted with great caution.


Subject(s)
Genome-Wide Association Study/methods , Genome-Wide Association Study/statistics & numerical data , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Data Interpretation, Statistical , Datasets as Topic/statistics & numerical data , Genotype , Humans , Phenotype
14.
Malar J ; 17(1): 225, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29871629

ABSTRACT

BACKGROUND: As much as 80% of global Plasmodium vivax infections occur in South Asia and there is a shortage of direct studies on infectivity of P. vivax in Anopheles stephensi, the most common urban mosquito carrying human malaria. In this quest, the possible effects of laboratory colonization of mosquitoes on infectivity and development of P. vivax is of interest given that colonized mosquitoes can be genetically less divergent than the field population from which they originated. METHODS: Patient-derived P. vivax infected blood was fed to age-matched wild and colonized An. stephensi. Such a comparison requires coordinated availability of same-age wild and colonized mosquito populations. Here, P. vivax infection are studied in colonized An. stephensi in their 66th-86th generation and fresh field-caught An. stephensi. Wild mosquitoes were caught as larvae and pupae and allowed to develop into adult mosquitoes in the insectary. Parasite development to oocyst and sporozoite stages were assessed on days 7/8 and 12/13, respectively. RESULTS: While there were batch to batch variations in infectivity of individual patient-derived P. vivax samples, both wild and colonized An. stephensi were roughly equally susceptible to oocyst stage Plasmodium infection. At the level of sporozoite development, significantly more mosquitoes with sporozoite load of 4+ were seen in wild than in colonized populations.


Subject(s)
Anopheles/parasitology , Mosquito Vectors/parasitology , Plasmodium vivax/isolation & purification , Animals , Female , India
15.
Proc Natl Acad Sci U S A ; 112(29): 8982-6, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26150499

ABSTRACT

Human life histories combine late age at first reproduction, long reproductive span, relatively high fertility, and substantial postreproductive survival. However, even among the most fecund populations, human fertility falls far below its theoretical maximum. The extent of parental care required for successful offspring recruitment and widespread fertility decline under proper economic conditions suggest that selection on fertility is constrained by trade-offs with recruitment. Here we measure the trade-offs between life history traits under selection by approximating the slope of the selective constraint curve on two traits at the observed values. Using a selection of populations that span human demographic space, we find that the substitution elasticity of fertility for infant survival shows age-related patterns, with minimum substitution elasticities ranging from 14 to 22 for the four populations. The age of this minimum occurs earlier in the high-mortality populations relative to generation time than it does in the low-mortality populations. The human curves are qualitatively similar to one of two comparable nonhuman primate age-specific substitution elasticity curves. The curve for rhesus macaques has a similar shape but is shifted down, meaning that the threshold for switching from investing in survival to fertility is lower at all ages. The magnitude of the substitution elasticities is similar between chimpanzees and humans but the shape is quite different, rising more slowly for a longer fraction of the chimpanzee life cycle. The steeply rising substitution elasticities with age in humans has clear implications for the evolution of reproductive senescence.


Subject(s)
Fertility/physiology , Life Cycle Stages , Demography , Humans , Infant , Infant Mortality , Models, Biological , Survival Analysis
16.
Ecol Lett ; 19(3): 268-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26843397

ABSTRACT

The effects of asymmetric interactions on population dynamics has been widely investigated, but there has been little work aimed at understanding how life history parameters like generation time, life expectancy and the variance in lifetime reproductive success are impacted by different types of competition. We develop a new framework for incorporating trait-mediated density-dependence into size-structured models and use Trinidadian guppies to show how different types of competitive interactions impact life history parameters. Our results show the degree of symmetry in competitive interactions can have dramatic effects on the speed of the life history. For some vital rates, shifting the competitive superiority from small to large individuals resulted in a doubling of the generation time. Such large influences of competitive symmetry on the timescale of demographic processes, and hence evolution, highlights the interwoven nature of ecological and evolutionary processes and the importance of density-dependence in understanding eco-evolutionary dynamics.


Subject(s)
Competitive Behavior , Poecilia/physiology , Animals , Female , Models, Biological , Population Dynamics
17.
Malar J ; 15(1): 569, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27884146

ABSTRACT

BACKGROUND: Malaria remains an important cause of morbidity and mortality in India. Though many comprehensive studies have been carried out in Africa and Southeast Asia to characterize and examine determinants of Plasmodium falciparum and Plasmodium vivax malaria pathogenesis, fewer have been conducted in India. METHODS: A prospective study of malaria-positive individuals was conducted at Goa Medical College and Hospital (GMC) from 2012 to 2015 to identify demographic, diagnostic and clinical indicators associated with P. falciparum and P. vivax infection on univariate analysis. RESULTS: Between 2012 and 2015, 74,571 febrile individuals, 6287 (8.4%) of whom were malaria positive, presented to GMC. The total number of malaria cases at GMC increased more than two-fold over four years, with both P. vivax and P. falciparum cases present year-round. Some 1116 malaria-positive individuals (mean age = 27, 91% male), 88.2% of whom were born outside of Goa and 51% of whom were construction workers, were enroled in the study. Of 1088 confirmed malaria-positive patients, 77.0% had P. vivax, 21.0% had P. falciparum and 2.0% had mixed malaria. Patients over 40 years of age and with P. falciparum infection were significantly (p < 0.001) more likely to be hospitalised than younger and P. vivax patients, respectively. While approximately equal percentages of hospitalised P. falciparum (76.6%) and P. vivax (78.9%) cases presented with at least one WHO severity indicator, a greater percentage of P. falciparum inpatients presented with at least two (43.9%, p < 0.05) and at least three (29.9%, p < 0.01) severity features. There were six deaths among the 182 hospitalised malaria positive patients, all of whom had P. falciparum. CONCLUSION: During the four year study period at GMC, the number of malaria cases increased substantially and the greatest burden of severe disease was contributed by P. falciparum.


Subject(s)
Malaria, Falciparum/pathology , Malaria, Vivax/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Demography , Female , Humans , Incidence , India/epidemiology , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Male , Middle Aged , Prospective Studies , Tertiary Care Centers , Young Adult
18.
J Anim Ecol ; 85(2): 356-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26899422

ABSTRACT

Despite the observed distribution of variable individual phenotypes, survival and reproductive performance in wild populations, models of population dynamics often focus on mean demographic rates. Populations are constituted by individuals with different phenotypes and thus different performances. However, many models of population dynamics provide no understanding of the influence of this phenotypic variation on population dynamics. In this paper, we investigate how the relationships between demographic rates and phenotype distribution influence the transmission and the upholding of phenotypic variation, and population dynamics. We used integral projection models to measure associations between differences of phenotypic trait (size or mass) among individuals and demographic rates, growth and inheritance, and then quantify the influence of phenotypic variation on population dynamics. We build an analytical and general model resulting from simplifications assuming small phenotypic variance. We illustrate our model with two case studies: a short- and a long-lived life history. Population growth rate r is determined by a Lotka style equation in which survival and fertility are averaged over a phenotypic distribution that changes with age. Here, we further decomposed r to show how much it is affected by shifts in phenotypic average as well as variance. We derived the elasticities of r to the first and second derivative of each demographic rate. In particular, we show that the nonlinearity of change in selective pressure with phenotype matters more to population dynamics than the strength of this selection. In other words, the variance of a given trait will be most important when the strength of selection increases (or decreases) nonlinearly with that trait. Inheritance shapes the distribution of newborn phenotypes. Even if newborns have a fixed average phenotype, the variance among newborns increases with phenotypic variance among mothers, strength of inheritance and developmental variation. We explain how the components of inheritance can influence phenotypic variance and thus the demographic rates and population dynamics. In particular, when mothers of different ages produce offspring of different mean phenotype, the inheritance function can have a large influence on both the mean and variance of the trait at different ages and thus on the population growth rate. We provide new tools to understand how phenotypic variation influences population dynamics and discuss in which life histories we expect this influence to be large. For instance, in our short-lived life history, individual variability has larger effect than in our long-lived life history. We conclude by indicating future directions of analysis.


Subject(s)
Heredity , Models, Genetic , Phenotype , Animals , Demography , Population Dynamics , Population Growth
19.
Nature ; 466(7305): 482-5, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20651690

ABSTRACT

Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.


Subject(s)
Body Weight/physiology , Global Warming , Hibernation/physiology , Marmota/anatomy & histology , Marmota/physiology , Animals , Biological Evolution , Colorado , Female , Marmota/growth & development , Phenotype , Population Dynamics , Reproduction/physiology , Survival Rate , Time Factors , Weaning
20.
Mol Ecol ; 24(1): 151-79, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25442828

ABSTRACT

We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.


Subject(s)
Drosophila/genetics , Environment , Life Cycle Stages/genetics , Transcriptome , Animals , Cactaceae , Female , Gene Expression Regulation, Developmental , Larva/genetics , Mexico , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL