Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Biometeorol ; 67(5): 735-744, 2023 May.
Article in English | MEDLINE | ID: mdl-37002402

ABSTRACT

The purpose was to describe wet bulb globe temperature (WBGT) throughout a high school fall athletic season (August to November) after a state-wide mandate requiring schools to use a WBGT-guided activity modification table with categories (AMTC). A cross-sectional research design utilized 30 South Carolina high schools. The independent variables were region (upstate, midlands, and coastal), sport (football, tennis, cross-country), month, start times (7-10 am, 10 am-3 pm, 3-6 pm, and 6-9 pm), and event type (practice, competition). Dependent variables were event frequency, average WBGT, and AMTC. Practice WBGT was 78.7 ± 8.2 °F (range: 34.7 to 99.0 °F). A significant difference for WBGT across month (F6, 904.7 = 385.07, P < 0.001) existed, with early September hotter than all other months (84.8 °F ± 3.8, P < 0.001). Every month had practices in each AMTC, until early November. Most events (64.6%, n = 1986) did not change AMTC; however, 9.1% (n = 281) changed to a hotter category. The 10 am-3 pm start time was significantly hotter than all other time frames (83.0 °F ± 7.2, P < 0.05). Tennis experienced hotter practices (79.9 °F ± 6.9) than football (78.4 °F ± 8.5; P < 0.001) and cross country (78.2 °F ± 8.8, P < 0.001). Schools in the Midlands experienced hotter practices (80.1 °F ± 7.8) than upstate (P < 0.001) and coastal schools (P = 0.005). Competition WBGT was significantly cooler than practices (72.3 ± 10.5 °F, t = 12.04, P < 0.001) and differed across sports (F2, 20.78 = 18.39, P < .001). Both cross-country (P = 0.003) and tennis (P < 0.001) were hotter than football. Schools should continuously monitor WBGT throughout practices and until November to optimize AMTC use. Risk mitigation strategies are needed for sports other than football to decrease the risk of exertional heat illnesses.


Subject(s)
Football , Heat Stress Disorders , Humans , Temperature , South Carolina , Cross-Sectional Studies , Schools , Hot Temperature
2.
Mol Plant Microbe Interact ; 33(3): 509-518, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31829102

ABSTRACT

The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.


Subject(s)
Bacterial Proteins/physiology , Pseudomonas syringae/genetics , Sugars/chemistry , Transcription Factors/physiology , Type III Secretion Systems/genetics , Arabidopsis/microbiology , DNA Transposable Elements , DNA-Binding Proteins , Gene Expression Regulation, Bacterial , Mutagenesis , Plant Diseases/microbiology
3.
Nat Commun ; 15(1): 7048, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147739

ABSTRACT

Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Innate Immunity Recognition , Plant Diseases , Plant Immunity , Pseudomonas syringae , Amino Acid Transport Systems, Basic/metabolism , Amino Acid Transport Systems, Basic/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Gene Expression Regulation, Plant/immunology , Innate Immunity Recognition/genetics , Metabolomics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Leaves/immunology , Proline/metabolism , Pseudomonas syringae/immunology , Pseudomonas syringae/pathogenicity , Signal Transduction , Virulence
4.
PLoS One ; 12(1): e0169502, 2017.
Article in English | MEDLINE | ID: mdl-28095435

ABSTRACT

The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 µg/L, significantly lower than the drinking water standard of 100 µg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.


Subject(s)
Ceramics/chemistry , Disinfectants/chemistry , Silver/chemistry , Tablets/chemistry , Water Purification/instrumentation , Water Purification/methods , Disinfection , Filtration , Humans , South Africa , Water Microbiology , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL