Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2321770121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950370

ABSTRACT

Solar particle events (SPEs) are short-lived bursts of high-energy particles from the solar atmosphere and are widely recognized as posing significant economic risks to modern society. Most SPEs are relatively weak and have minor impacts on the Earth's environment, but historic records contain much stronger SPEs which have the potential to alter atmospheric chemistry, impacting climate and biological life. The impacts of such strong SPEs would be far more severe when the Earth's protective geomagnetic field is weak, such as during past geomagnetic excursions or reversals. Here, we model the impacts of an extreme SPE under different geomagnetic field strengths, focusing on changes in atmospheric chemistry and surface radiation using the atmosphere-ocean-chemistry-climate model SOCOL3-MPIOM and the radiation transfer model LibRadtran. Under current geomagnetic conditions, an extreme SPE would increase NOx concentrations in the polar stratosphere and mesosphere, causing reductions in extratropical stratospheric ozone lasting for about a year. In contrast, with no geomagnetic field, there would be a substantial increase in NOx throughout the entire atmosphere, resulting in severe stratospheric ozone depletion for several years. The resulting ground-level ultraviolet (UV) radiation would remain elevated for up to 6 y, leading to increases in UV index up to 20 to 25% and solar-induced DNA damage rates by 40 to 50%. The potential evolutionary impacts of past extreme SPEs remain an important question, while the risks they pose to human health in modern conditions continue to be underestimated.

2.
Proc Natl Acad Sci U S A ; 120(22): e2213061120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37220274

ABSTRACT

The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.


Subject(s)
Neanderthals , Humans , Animals , Africa , Acclimatization , Arabia , Selection, Genetic
3.
Nature ; 544(7649): 180-184, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28273067

ABSTRACT

Aboriginal Australians represent one of the longest continuous cultural complexes known. Archaeological evidence indicates that Australia and New Guinea were initially settled approximately 50 thousand years ago (ka); however, little is known about the processes underlying the enormous linguistic and phenotypic diversity within Australia. Here we report 111 mitochondrial genomes (mitogenomes) from historical Aboriginal Australian hair samples, whose origins enable us to reconstruct Australian phylogeographic history before European settlement. Marked geographic patterns and deep splits across the major mitochondrial haplogroups imply that the settlement of Australia comprised a single, rapid migration along the east and west coasts that reached southern Australia by 49-45 ka. After continent-wide colonization, strong regional patterns developed and these have survived despite substantial climatic and cultural change during the late Pleistocene and Holocene epochs. Remarkably, we find evidence for the continuous presence of populations in discrete geographic areas dating back to around 50 ka, in agreement with the notable Aboriginal Australian cultural attachment to their country.


Subject(s)
Genome, Mitochondrial/genetics , Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Phylogeography , Australia , Cultural Evolution , DNA, Mitochondrial/genetics , Haplotypes/genetics , History, Ancient , Humans , Phylogeny
4.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32047039

ABSTRACT

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

5.
Microbiology (Reading) ; 168(4)2022 04.
Article in English | MEDLINE | ID: mdl-35416764

ABSTRACT

Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes.


Subject(s)
Microalgae , Microbiota , Antarctic Regions , Bays , Ecosystem , Ice Cover
6.
Proc Natl Acad Sci U S A ; 115(34): 8482-8490, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30082377

ABSTRACT

Anatomically modern humans (Homo sapiens, AMH) began spreading across Eurasia from Africa and adjacent Southwest Asia about 50,000-55,000 years ago (ca 50-55 ka). Some have argued that human genetic, fossil, and archaeological data indicate one or more prior dispersals, possibly as early as 120 ka. A recently reported age estimate of 65 ka for Madjedbebe, an archaeological site in northern Sahul (Pleistocene Australia-New Guinea), if correct, offers what might be the strongest support yet presented for a pre-55-ka African AMH exodus. We review evidence for AMH arrival on an arc spanning South China through Sahul and then evaluate data from Madjedbebe. We find that an age estimate of >50 ka for this site is unlikely to be valid. While AMH may have moved far beyond Africa well before 50-55 ka, data from the region of interest offered in support of this idea are not compelling.


Subject(s)
Human Migration/history , Africa , Archaeology , Asia , History, Ancient , Humans
7.
Nature ; 505(7482): 133, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24402248
8.
Sci Total Environ ; 878: 162936, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36934916

ABSTRACT

The COVID-19 pandemic has caused significant disruptions to the world since 2020, with over 647 million confirmed cases and 6.7 million reported deaths as of January 2023. Despite its far-reaching impact, the effects of COVID-19 on the progress of global climate change negotiations have yet to be thoroughly evaluated. This discussion paper conducts an examination of COVID-19's impact on climate change actions at global, national, and local levels through a comprehensive review of existing literature. This analysis reveals that the pandemic has resulted in delays in implementing climate policies and altered priorities from climate action to the pandemic response. Despite these setbacks, the pandemic has also presented opportunities for accelerating the transition to a low-carbon economy. The interplay between these outcomes and the different levels of governance will play a crucial role in determining the success or failure of future climate change negotiations.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Climate Change , Negotiating , Pandemics , Carbon
9.
Sci Total Environ ; 802: 149542, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34454138

ABSTRACT

The alpine area of the Australian mainland is highly sensitive to climate and environmental change, and potentially vulnerable to ecosystem tipping points. Over the next two decades the Australian alpine region is predicted to experience temperature increases of at least 1 °C, coupled with a substantial decrease in snow cover. Extending the short instrumental record in these regions is imperative to put future change into context, and potentially provide analogues of warming. We reconstructed past temperatures, using a lipid biomarker palaeothermometer technique and mercury flux changes for the past 3500 years from the sediments of Club Lake, a high-altitude alpine tarn in the Snowy Mountains, southeastern Australia. Using a multi-proxy framework, including pollen and charcoal analyses, high-resolution geochemistry, and ancient microbial community composition, supported by high-resolution 210Pb and AMS 14C dating, we investigated local and regional ecological and environmental changes occurring in response to changes in temperature. We find the region experienced a general warming trend over the last 3500 years, with a pronounced climate anomaly occurring between 1000 and 1600 cal yrs. BP. Shifts in vegetation took place during this warm period, characterised by a decline in alpine species and an increase in open woodland taxa which co-occurred with an increase in regional fire activity. Given the narrow altitudinal band of Australian alpine vegetation, any future warming has the potential to result in the extinction of alpine species, including several endemic to the area, as treelines are driven to higher elevations. These findings suggest ongoing conservation efforts will be needed to protect the vulnerable alpine environments from the combined threats of climate changes, fire and invasive species.


Subject(s)
Ecosystem , Fires , Australia , Climate Change , Forests
10.
Nat Ecol Evol ; 6(12): 2003-2015, 2022 12.
Article in English | MEDLINE | ID: mdl-36316412

ABSTRACT

The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.


Subject(s)
Hominidae , Selection, Genetic , Animals , Humans , Biological Evolution , Genome, Human , Genomics
11.
Nat Ecol Evol ; 6(6): 802-812, 2022 06.
Article in English | MEDLINE | ID: mdl-35449459

ABSTRACT

The initial peopling of the remote Pacific islands was one of the greatest migrations in human history, beginning three millennia ago by Lapita cultural groups. The spread of Lapita out of an ancestral Asian homeland is a dominant narrative in the origins of Pacific peoples, and although Island New Guinea has long been recognized as a springboard for the peopling of Oceania, the role of Indigenous populations in this remarkable phase of exploration remains largely untested. Here, we report the earliest evidence for Lapita-introduced animals, turtle bone technology and repeated obsidian import in southern New Guinea 3,480-3,060 years ago, synchronous with the establishment of the earliest known Lapita settlements 700 km away. Our findings precede sustained Lapita migrations and pottery introductions by several centuries, occur alongside Indigenous technologies and suggest continued multicultural influences on population diversity despite language replacement. Our work shows that initial Lapita expansion throughout Island New Guinea was more expansive than previously considered, with Indigenous contact influencing migration pathways and island-hopping strategies that culminated in rapid and purposeful Pacific-wide settlement. Later Lapita dispersals through New Guinea were facilitated by earlier contact with Indigenous populations and profoundly influenced the region as a global centre of cultural and linguistic diversity.


Subject(s)
Turtles , Animals , New Guinea , Oceania
12.
Proc Natl Acad Sci U S A ; 105(34): 12150-3, 2008 Aug 26.
Article in English | MEDLINE | ID: mdl-18719103

ABSTRACT

Establishing the cause of past extinctions is critical if we are to understand better what might trigger future occurrences and how to prevent them. The mechanisms of continental late Pleistocene megafaunal extinction, however, are still fiercely contested. Potential factors contributing to their demise include climatic change, human impact, or some combination. On the Australian mainland, 90% of the megafauna became extinct by approximately 46 thousand years (ka) ago, soon after the first archaeological evidence for human colonization of the continent. Yet, on the neighboring island of Tasmania (which was connected to the mainland when sea levels were lower), megafaunal extinction appears to have taken place before the initial human arrival between 43 and 40 ka, which would seem to exonerate people as a contributing factor in the extirpation of the island megafauna. Age estimates for the last megafauna, however, are poorly constrained. Here, we show, by direct dating of fossil remains and their associated sediments, that some Tasmanian megafauna survived until at least 41 ka (i.e., after their extinction on the Australian mainland) and thus overlapped with humans. Furthermore, a vegetation record for Tasmania spanning the last 130 ka shows that no significant regional climatic or environmental change occurred between 43 and 37 ka, when a land bridge existed between Tasmania and the mainland. Our results are consistent with a model of human-induced extinction for the Tasmanian megafauna, most probably driven by hunting, and they reaffirm the value of islands adjacent to continental landmasses as tests of competing hypotheses for late Quaternary megafaunal extinctions.


Subject(s)
Extinction, Biological , Mammals , Animals , Australia , Food Chain , Humans , Paleontology
13.
Nat Commun ; 12(1): 6683, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795275

ABSTRACT

Emerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.

14.
Nat Ecol Evol ; 5(5): 616-624, 2021 05.
Article in English | MEDLINE | ID: mdl-33753899

ABSTRACT

The hominin fossil record of Island Southeast Asia (ISEA) indicates that at least two endemic 'super-archaic' species-Homo luzonensis and H. floresiensis-were present around the time anatomically modern humans arrived in the region >50,000 years ago. Intriguingly, contemporary human populations across ISEA carry distinct genomic traces of ancient interbreeding events with Denisovans-a separate hominin lineage that currently lacks a fossil record in ISEA. To query this apparent disparity between fossil and genetic evidence, we performed a comprehensive search for super-archaic introgression in >400 modern human genomes, including >200 from ISEA. Our results corroborate widespread Denisovan ancestry in ISEA populations, but fail to detect any substantial super-archaic admixture signals compatible with the endemic fossil record of ISEA. We discuss the implications of our findings for the understanding of hominin history in ISEA, including future research directions that might help to unlock more details about the prehistory of the enigmatic Denisovans.


Subject(s)
Hominidae , Neanderthals , Animals , Asia, Southeastern , Fossils , Hominidae/genetics , Humans , Islands
15.
Science ; 374(6570): eabi9756, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34793203

ABSTRACT

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model.

16.
Science ; 374(6570): eabh3655, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34793228

ABSTRACT

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.

17.
Science ; 371(6531): 811-818, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33602851

ABSTRACT

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.

18.
Nature ; 428(6980): 306-10, 2004 Mar 18.
Article in English | MEDLINE | ID: mdl-15029193

ABSTRACT

The El Niño/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial-interglacial cycle. ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time, but the proposals disagree on whether increased frequency of El Niño events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Niño events (summer precipitation declines in El Niño years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard-Oeschger events--millennial-scale warm events in the North Atlantic climate record--although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (approximately 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.


Subject(s)
Climate , Ice , Seawater , Temperature , Asia , Atlantic Ocean , Atmosphere , Australia , Cyperaceae/physiology , Geologic Sediments , Oxygen Isotopes , Pacific Ocean , Poaceae/physiology , Soil , Time Factors
19.
PLoS One ; 14(7): e0218430, 2019.
Article in English | MEDLINE | ID: mdl-31314758

ABSTRACT

Reconstructing past sea levels can help constrain uncertainties surrounding the rate of change, magnitude, and impacts of the projected increase through the 21st century. Of significance is the mid-Holocene relative sea-level highstand in tectonically stable and remote (far-field) locations from major ice sheets. The east coast of Australia provides an excellent arena in which to investigate changes in relative sea level during the Holocene. Considerable debate surrounds both the peak level and timing of the east coast highstand. The southeast Australian site of Bulli Beach provides the earliest evidence for the establishment of a highstand in the Southern Hemisphere, although questions have been raised about the pretreatment and type of material that was radiocarbon dated for the development of the regional sea-level curve. Here we undertake a detailed morpho- and chronostratigraphic study at Bulli Beach to better constrain the timing of the Holocene highstand in eastern Australia. In contrast to wood and charcoal samples that may provide anomalously old ages, probably due to inbuilt age, we find that short-lived terrestrial plant macrofossils provide a robust chronological framework. Bayesian modelling of the ages provide improved dating of the earliest evidence for a highstand at 6,880±50 cal BP, approximately a millennium later than previously reported. Our results from Bulli now closely align with other sea-level reconstructions along the east coast of Australia, and provide evidence for a synchronous relative sea-level highstand that extends from the Gulf of Carpentaria to Tasmania. Our refined age appears to be coincident with major ice mass loss from Northern Hemisphere and Antarctic ice sheets, supporting previous studies that suggest these may have played a role in the relative sea-level highstand. Further work is now needed to investigate the environmental impacts of regional sea levels, and refine the timing of the subsequent sea-level fall in the Holocene and its influence on coastal evolution.


Subject(s)
Fossils , Ice Cover , Sea Level Rise/history , Antarctic Regions , Australia , Carbon Isotopes/analysis , History, Ancient
20.
Nat Ecol Evol ; 3(1): 31-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30478308

ABSTRACT

Understanding extinction events requires an unbiased record of the chronology and ecology of victims and survivors. The rhinoceros Elasmotherium sibiricum, known as the 'Siberian unicorn', was believed to have gone extinct around 200,000 years ago-well before the late Quaternary megafaunal extinction event. However, no absolute dating, genetic analysis or quantitative ecological assessment of this species has been undertaken. Here, we show, by accelerator mass spectrometry radiocarbon dating of 23 individuals, including cross-validation by compound-specific analysis, that E. sibiricum survived in Eastern Europe and Central Asia until at least 39,000 years ago, corroborating a wave of megafaunal turnover before the Last Glacial Maximum in Eurasia, in addition to the better-known late-glacial event. Stable isotope data indicate a dry steppe niche for E. sibiricum and, together with morphology, a highly specialized diet that probably contributed to its extinction. We further demonstrate, with DNA sequencing data, a very deep phylogenetic split between the subfamilies Elasmotheriinae and Rhinocerotinae that includes all the living rhinoceroses, settling a debate based on fossil evidence and confirming that the two lineages had diverged by the Eocene. As the last surviving member of the Elasmotheriinae, the demise of the 'Siberian unicorn' marked the extinction of this subfamily.


Subject(s)
Extinction, Biological , Perissodactyla , Animals , Bone and Bones/chemistry , Carbon Isotopes/analysis , DNA/analysis , Evolution, Molecular , Nitrogen Isotopes/analysis , Perissodactyla/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL