Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110845

ABSTRACT

Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial properties as it improves osseointegration and eventually becomes degraded and replaced with new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD) and compared monocyte differentiation and material resorption between ALD-HA and bone. After stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact angle on ALD-HA 86.2° vs. 86.7° on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm) was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA might be a consequence of the topographical properties of the coating. The absence of resorptive osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the coating to induce osteoclast differentiation.


Subject(s)
Monocytes , Titanium , Animals , Cattle , Humans , Titanium/pharmacology , Durapatite/pharmacology , Durapatite/chemistry , Osteoclasts/metabolism , Cell Differentiation , RANK Ligand/metabolism
2.
Am J Physiol Endocrinol Metab ; 322(3): E211-E218, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35068191

ABSTRACT

Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.


Subject(s)
Fractures, Bone , Osteoporosis , Animals , Bone Density , Cancellous Bone/metabolism , Estradiol/pharmacology , Estrogens/pharmacology , Female , Humans , Mice , Osteoporosis/genetics , Osteoporosis/metabolism , Ovariectomy , Thrombospondins/genetics , Thrombospondins/pharmacology
3.
Mediators Inflamm ; 2022: 2606916, 2022.
Article in English | MEDLINE | ID: mdl-35693109

ABSTRACT

Background: Rheumatoid arthritis (RA) and osteoarthritis (OA) are common joint diseases associated with changes in local, as well as systemic bone structure and osteoclast function. We investigated how the different soluble inflammatory stimuli in these diseases can affect osteoclastogenesis and bone resorption in vitro. Methods. Human peripheral blood mononuclear cell-derived osteoclasts were cultured on bone slices with serum from treatment-naïve RA patients and healthy controls and with synovial fluid samples acquired from RA and OA patients. The concentrations of 29 different cytokines and related proteins, including RANKL and OPG, were analyzed in the fluids tested. Results: RA serum and synovial fluid increased both osteoclastogenesis and bone resorption. Osteoclastogenesis and activity increased more in the cultures containing OA than RA synovial fluid. The osteoclasts cultured in different culture media exhibited different phenotypes, especially the cells cultured with OA synovial fluid were generally larger and had more nuclei. A general increase in proinflammatory cytokines in RA synovial fluid and serum was found. Surprisingly, OA synovial fluid showed lower levels of osteoclastogenesis inhibiting cytokines, such as IL-4 and IL-10, than RA synovial fluid, which at least partly explains more pronounced osteoclastogenesis. No significant difference was found in RANKL or OPG levels. Conclusion: The proinflammatory stimulus in OA and RA drives the monocyte differentiation towards inflammatory osteoclastogenesis and altered osteoclast phenotype.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Osteoarthritis , Arthritis, Rheumatoid/metabolism , Bone Resorption/metabolism , Cytokines/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Monocytes/metabolism , Osteoarthritis/metabolism , Osteoclasts/metabolism , Osteogenesis , Synovial Fluid/metabolism , Synovial Membrane/metabolism
4.
Am J Physiol Endocrinol Metab ; 320(5): E967-E975, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33749332

ABSTRACT

Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on nonvertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1-expressing osteocytes and late osteoblasts (Dmp1-creNotumflox/flox mice). We observed that the Dmp1-creNotumflox/flox mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur but no change in trabecular bone volume fraction in femur or in the lumbar vertebrae L5 in Dmp1-creNotumflox/flox mice as compared with control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce nonvertebral fracture risk.NEW & NOTEWORTHY NOTUM produced by osteoblasts is known to regulate cortical bone mass. Our new findings show that NOTUM specifically derived by DMP1-expressing osteocytes and late osteoblasts regulates cortical bone mass and not trabecular bone mass.


Subject(s)
Bone Density/genetics , Esterases/physiology , Osteoblasts/metabolism , Osteocytes/metabolism , Osteoporosis/genetics , Animals , Bone Remodeling/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Cortical Bone/physiology , Esterases/genetics , Esterases/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/physiology , Osteocytes/physiology , Osteogenesis/genetics , Osteoporosis/metabolism
5.
FASEB J ; 33(10): 11163-11179, 2019 10.
Article in English | MEDLINE | ID: mdl-31307226

ABSTRACT

Osteoporosis is a common skeletal disease, affecting millions of individuals worldwide. Currently used osteoporosis treatments substantially reduce vertebral fracture risk, whereas nonvertebral fracture risk, mainly caused by reduced cortical bone mass, has only moderately been improved by the osteoporosis drugs used, defining an unmet medical need. Because several wingless-type MMTV integration site family members (WNTs) and modulators of WNT activity are major regulators of bone mass, we hypothesized that NOTUM, a secreted WNT lipase, might modulate bone mass via an inhibition of WNT activity. To characterize the possible role of endogenous NOTUM as a physiologic modulator of bone mass, we developed global, cell-specific, and inducible Notum-inactivated mouse models. Notum expression was high in the cortical bone in mice, and conditional Notum inactivation revealed that osteoblast lineage cells are the principal source of NOTUM in the cortical bone. Osteoblast lineage-specific Notum inactivation increased cortical bone thickness via an increased periosteal circumference. Inducible Notum inactivation in adult mice increased cortical bone thickness as a result of increased periosteal bone formation, and silencing of Notum expression in cultured osteoblasts enhanced osteoblast differentiation. Large-scale human genetic analyses identified genetic variants mapping to the NOTUM locus that are strongly associated with bone mineral density (BMD) as estimated with quantitative ultrasound in the heel. Thus, osteoblast-derived NOTUM is an essential local physiologic regulator of cortical bone mass via effects on periosteal bone formation in adult mice, and genetic variants in the NOTUM locus are associated with BMD variation in adult humans. Therapies targeting osteoblast-derived NOTUM may prevent nonvertebral fractures.-Movérare-Skrtic, S., Nilsson, K. H., Henning, P., Funck-Brentano, T., Nethander, M., Rivadeneira, F., Coletto Nunes, G., Koskela, A., Tuukkanen, J., Tuckermann, J., Perret, C., Souza, P. P. C., Lerner, U. H., Ohlsson, C. Osteoblast-derived NOTUM reduces cortical bone mass in mice and the NOTUM locus is associated with bone mineral density in humans.


Subject(s)
Bone Density/genetics , Cortical Bone/metabolism , Cortical Bone/physiology , Esterases/metabolism , Osteoblasts/metabolism , Animals , Bone Density/physiology , Cell Differentiation/genetics , Cell Differentiation/physiology , Esterases/genetics , Female , Fractures, Bone/metabolism , Fractures, Bone/physiopathology , Genetic Variation/genetics , Humans , Male , Mice , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/metabolism , Osteoporosis/physiopathology , Wnt Proteins/metabolism
6.
Eur J Oral Sci ; 128(2): 160-169, 2020 04.
Article in English | MEDLINE | ID: mdl-32154611

ABSTRACT

The aim of this study was to evaluate the hydrophilicity, surface free energy, and proliferation and viability of human osteoblast-like MC3T3-E1 cells on sandblasted and acid-etched titanium surfaces after air-abrasion with 45S5 bioactive glass, zinc-containing bioactive glass, or inert glass. Sandblasted and acid-etched titanium discs were subjected to air-abrasion with 45S5 bioactive glass, experimental bioactive glass (Zn4), or inert glass. Water contact angles and surface free energy were evaluated. The surfaces were studied with preosteoblastic MC3T3-E1 cells. Air-abrasion with either type of glass significantly enhanced the hydrophilicity and surface free energy of the sandblasted and acid-etched titanium discs. The MC3T3-E1 cell number was higher for substrates air-abraded with Zn4 bioactive glass and similar to that observed on borosilicate coverslips (controls). Confocal laser scanning microscopy images showed that MC3T3-E1 cells did not spread as extensively on the sandblasted and acid-etched and bioactive glass-abraded surfaces as they did on control surfaces. However, for 45S5- and Zn4-treated samples, the cells spread most at the 24 h time point and changed their morphology to more spindle-like when cultured further. Air-abrasion with bioactive glass and inert glass was shown to have a significant effect on the wettability and surface free energy of the surfaces under investigation. Osteoblast cell proliferation on sandblasted and acid-etched titanium discs was enhanced by air-abrasion with 45S5 bioactive glass and experimental Zn4 bioactive glass compared with air-abrasion with inert glass or no air-abrasion.


Subject(s)
Osteoblasts , Cell Proliferation , Humans , Microscopy, Electron, Scanning , Surface Properties , Titanium , Wettability
7.
Histochem Cell Biol ; 151(6): 475-487, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30637455

ABSTRACT

Osteopontin (OPN) is a non-collagenous extracellular sialylated glycoprotein located in bone. It is believed to be one of the key components in osteoclast attachment to bone during resorption. In this study, we characterized OPN and other glycoproteins found in the resorption lacunae to confirm the role of osteoclasts in OPN secretion using electron microscopy and mass spectrometry. Additionally, we examined the glycan epitopes of resorption pits and the effects of different glycan epitopes on the differentiation and function of osteoclasts. Osteoarthritic femoral heads were examined by immunohistochemistry to reveal the presence of OPN in areas of increased bone metabolism in vivo. Our results demonstrate that human osteoclasts secrete OPN into resorption lacunae on native human bone and on carbonated hydroxyapatite devoid of natural OPN. OPN is associated with an elevated bone turnover in osteoarthritic bone under experimental conditions. Our data further confirm that osteoclasts secrete OPN into the resorption pit where it may function as a chemokine for subsequent bone formation. We show that α2,3- and α2,6-linked sialic acids have a role in the process of osteoclast differentiation. OPN is one of the proteins that has both of the above sialic residues, hence we propose that de-sialylation can effect osteoclast differentiation in bone.


Subject(s)
Bone Resorption , Femur Head/metabolism , Osteoclasts/metabolism , Osteopontin/metabolism , Animals , Cell Differentiation/drug effects , Femur Head/drug effects , Humans , Mass Spectrometry , Microscopy, Electron , Osteoclasts/drug effects , Sialic Acids/pharmacology
8.
Am J Phys Anthropol ; 170(2): 196-206, 2019 10.
Article in English | MEDLINE | ID: mdl-31390059

ABSTRACT

OBJECTIVES: Body mass estimation from skeletal dimensions is a useful tool when studying archeological human samples. Bony articular surface dimensions of the lower limb have frequently been utilized to estimate body size. In the present study, we investigated the association between knee breadth and body mass in a Northern European population. Our study aimed to confirm both methodology and results presented in earlier studies. MATERIALS AND METHODS: The study sample consists of 1,290 subjects belonging to the Northern Finland Birth Cohort 1966. Three knee breadth dimensions-femoral biepicondylar breadth, mediolateral breadth of femoral condyles, and mediolateral breadth of the tibial plateau-were measured from subjects' knee PA-radiographs. Measurements and their association with body weight at 31 years were utilized for creating body mass estimation equations using linear regression and reduced major axis regression. Correlations between knee measurements and body weight at three different ages (18, 31, and 46) were also analyzed. RESULTS: Positive associations were detected between each knee breadth variable and weight in the total sample and both genders separately. Body mass estimation equations were created for the total sample, for males and for females. R values of the models ranged from 0.38 to 0.74. Median absolute percent prediction errors ranged from 6.89 to 9.72%. The highest correlations were obtained between knee breadth and body weight in early adulthood. DISCUSSION: Our large sample confirmed that equations derived from knee breadth dimensions are accurate when estimating body mass of modern humans. Knee breadth measurements clearly have a positive association with body weight in early maturity.


Subject(s)
Body Weight/physiology , Knee/anatomy & histology , Adolescent , Adult , Anthropology, Physical , Cohort Studies , Female , Finland , Humans , Knee/physiology , Male , Middle Aged , Young Adult
9.
Proc Natl Acad Sci U S A ; 112(48): 14972-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627248

ABSTRACT

Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16(-/-) mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16(-/-) and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.


Subject(s)
Bone Density/physiology , Osteoblasts/metabolism , Spine/metabolism , Wnt Proteins/biosynthesis , Animals , Estrogens , Female , Mice , Mice, Knockout , Osteoblasts/cytology , Wnt Proteins/genetics
10.
J Mater Sci Mater Med ; 29(8): 111, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30019192

ABSTRACT

The purpose of this study was to evaluate the mechanical properties of nanocrystalline hydroxyapatite coating by tensile adhesion testing and scratch testing. The coating was manufactured on titanium substrate by converting atomic layer-deposited (ALD) calcium carbonate thin film in dilute phosphate solution. The tensile adhesion testing was performed with hydraulic testing device in accordance with ISO 4624 and ISO 16276-1. Scratch testing was done according to SFS-EN 13523-12 with spherical 10 µm scratching tip. Characterization of the samples was done with light and electron microscopy after which they were stained with alizarin red and the failure modes and loadings were analyzed. The highest obtained tensile adhesion value was 6.71 MPa produced with 4000 ALD cycles, converted to hydroxyapatite in alkaline solution, and annealed for 30 min in 700 °C. The annealing improved the adhesion values by approximately 0.8 MPa, but examining the samples with electron microscopy showed intact coating in both annealed and non-annealed samples. Samples produced with 4000 cycles performed better in testing than 2000 cycle samples, and better adhesion was also achieved with alkaline conversion solution compared to neutral solution.


Subject(s)
Calcium Carbonate/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Adhesiveness , Bone and Bones/chemistry , Humans , Materials Testing , Microscopy, Electron , Microscopy, Electron, Scanning , Pressure , Stress, Mechanical , Temperature , Tensile Strength
11.
J Exp Biol ; 220(Pt 12): 2196-2202, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28373598

ABSTRACT

The raccoon dog (Nyctereutes procyonoides) is a promising animal model capable of preventing disuse-induced osteoporosis. Previous data suggest that this species resembles bears in the preservation of bone mass and biomechanical properties during prolonged passivity and catabolism. This longitudinal study examined the osteological properties of tibiae in farm-bred raccoon dogs that were either fed or fasted (n=6 per group) for a 10 week period. Peripheral quantitative computed tomography was utilized and plasma markers of bone turnover measured before fasting and at 9 weeks followed by mechanical testing (three-point bending), micro-computed tomography and Fourier transform infrared imaging at 10 weeks. Passive wintering with prolonged catabolism (body mass loss 32%) had no significant effects on bone mineralization, porosity or strength. The concentration of C-terminal telopeptide of type I collagen, indicative of bone resorption, increased in the plasma of the fasted raccoon dogs, while the bone formation markers were unchanged. The levels of 25-hydroxyvitamin D were reduced in the fasted animals. Based on these data, the preservation of bone in wintering raccoon dogs shares characteristics with that of bears with no apparent decrease in the formation of bone but increased resorption. To conclude, raccoon dogs were able to minimize bone loss during a 10 week period of catabolism and passivity.


Subject(s)
Bone Density , Bone and Bones/anatomy & histology , Bone and Bones/physiology , Fasting , Raccoon Dogs/physiology , Animals , Biomarkers/blood , Female , Longitudinal Studies , Male , Random Allocation
12.
J Biol Chem ; 290(27): 16964-78, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26001784

ABSTRACT

Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2ß2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype.


Subject(s)
Chondrocytes/enzymology , Extracellular Matrix/metabolism , Osteochondrodysplasias/enzymology , Procollagen-Proline Dioxygenase/deficiency , Animals , Apoptosis , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen/biosynthesis , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Osteochondrodysplasias/embryology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/physiopathology , Procollagen-Proline Dioxygenase/genetics
13.
Am J Physiol Endocrinol Metab ; 311(1): E138-44, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27221117

ABSTRACT

Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by ≈70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I(-/-) mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I(-/-) and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I(-/-) mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an ∼70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I(-/-) mice.


Subject(s)
Adaptation, Physiological/genetics , Cortical Bone/metabolism , Insulin-Like Growth Factor I/genetics , Liver/metabolism , Osteogenesis/genetics , Tibia/metabolism , Weight-Bearing , Animals , Bone Density/genetics , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Cancellous Bone/physiology , Cortical Bone/diagnostic imaging , Cortical Bone/physiology , Female , Insulin-Like Growth Factor I/metabolism , Mice , Porosity , Stress, Mechanical , Tibia/diagnostic imaging , X-Ray Microtomography
14.
Am J Physiol Endocrinol Metab ; 310(11): E912-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27048997

ABSTRACT

The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis.


Subject(s)
Bone Density/physiology , Estrogen Receptor Modulators/administration & dosage , Estrogen Receptor alpha/metabolism , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/physiology , Animals , Bone Density/drug effects , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred C57BL , Organ Size/drug effects , Organ Size/physiology , Ovariectomy , Signal Transduction/drug effects , Signal Transduction/physiology
15.
FASEB J ; 29(8): 3193-205, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25877214

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that is most commonly caused by a de novo point mutation in exon 11 of the LMNA gene, c.1824C>T, which results in an increased production of a truncated form of lamin A known as progerin. In this study, we used a mouse model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7 weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant progerin splicing give hope to patients who are affected by HGPS.


Subject(s)
Bone and Bones/drug effects , Gene Silencing/physiology , Mutation/genetics , Progeria/drug therapy , Progeria/genetics , Stilbenes/pharmacology , Transgenes/genetics , Animals , Bone and Bones/metabolism , Female , Lamin Type A/metabolism , Male , Mice , Osteocytes/drug effects , Osteocytes/metabolism , Phenotype , Progeria/metabolism , Resveratrol
16.
Proc Natl Acad Sci U S A ; 110(6): 2294-9, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23345419

ABSTRACT

The bone-sparing effect of estrogen in both males and females is primarily mediated via estrogen receptor-α (ERα), encoded by the Esr1 gene. ERα in osteoclasts is crucial for the trabecular bone-sparing effect of estrogen in females, but it is dispensable for trabecular bone in male mice and for cortical bone in both genders. We hypothesized that ERα in osteocytes is important for trabecular bone in male mice and for cortical bone in both males and females. Dmp1-Cre mice were crossed with ERα(flox/flox) mice to generate mice lacking ERα protein expression specifically in osteocytes (Dmp1-ERα(-/-)). Male Dmp1-ERα(-/-) mice displayed a substantial reduction in trabecular bone volume (-20%, P < 0.01) compared with controls. Dynamic histomorphometry revealed reduced bone formation rate (-45%, P < 0.01) but the number of osteoclasts per bone surface was unaffected in the male Dmp1-ERα(-/-) mice. The male Dmp1-ERα(-/-) mice had reduced expression of several osteoblast/osteocyte markers in bone, including Runx2, Sp7, and Dmp1 (P < 0.05). Gonadal intact Dmp1-ERα(-/-) female mice had no significant reduction in trabecular bone volume but ovariectomized Dmp1-ERα(-/-) female mice displayed an attenuated trabecular bone response to supraphysiological E2 treatment. Dmp1-ERα(-/-) mice of both genders had unaffected cortical bone. In conclusion, ERα in osteocytes regulates trabecular bone formation and thereby trabecular bone volume in male mice but it is dispensable for the trabecular bone in female mice and the cortical bone in both genders. We propose that the physiological trabecular bone-sparing effect of estrogen is mediated via ERα in osteocytes in males, but via ERα in osteoclasts in females.


Subject(s)
Bone Development/physiology , Estrogen Receptor alpha/physiology , Osteocytes/physiology , Animals , Bone Development/genetics , Bone Remodeling/drug effects , Bone Remodeling/genetics , Bone Remodeling/physiology , Bone Resorption/metabolism , Bone Resorption/pathology , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Count , Estradiol/pharmacology , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Osteoclasts/cytology , Osteoclasts/physiology , Osteocytes/cytology , Osteogenesis/genetics , Osteogenesis/physiology , Ovariectomy , Ovary/physiology , Sex Characteristics , Stress, Mechanical
17.
J Anat ; 226(5): 434-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25913516

ABSTRACT

Several studies have demonstrated age-related changes in vertebral dimensions. Vertebral size has been reported to increase among elderly adults, with periosteal apposition resulting in increased cross-sectional area (CSA) of the vertebral corpus combined with reduction in bone mineral density. These changes in CSA are observed to be sex-specific, as the pronounced increase of vertebral CSA is found only in elderly males. However, the reduction in bone mineral density in old age is apparent within both sexes. It is thus hypothesized that higher fracture risk in elderly women is a result of their incapacity to increase vertebral size and thus adapt to bone mineral reduction. In this study, our aim was to explore whether the onset of these changes could be ascribed to specific age intervals and whether the proposed differences between the sexes are as great as previously suggested. To conduct this study we utilized two large early 20th century skeletal collections known as Terry and Bass (n = 181). We also utilized data from two lumbar spine magnetic resonance imaging samples as a modern-day reference (n = 497). Age, sex and ethnicity of all individuals were known. Vertebral CSA was determined by measuring three width and length dimensions from the corpus of the fourth lumbar vertebra (L4). Our results indicate only a moderate association between age and vertebral CSA. This association was observed to be relatively similar in both sexes, and we thus conclude that there is no clear sex-specific compensatory mechanism for age-related bone loss in vertebral size.


Subject(s)
Osteoporosis/physiopathology , Spine/anatomy & histology , Spine/growth & development , Adult , Age Factors , Anatomy, Cross-Sectional/methods , Bone Density/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Sex Factors
18.
Proc Natl Acad Sci U S A ; 109(3): 983-8, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22215598

ABSTRACT

It has generally been assumed that bone mass is controlled by endocrine mechanisms and the local bone environment. Recent findings demonstrate that central pathways are involved in the regulation of bone mass. Estrogen is involved in the regulation of bone homeostasis and the CNS is also a target for estrogen actions. The aim of this study was to investigate in vivo the role of central estrogen receptor-α (ERα) expression for bone mass. Nestin-Cre mice were crossed with ERα(flox) mice to generate mice lacking ERα expression specifically in nervous tissue (nestin-ERα(-/-)). Bone mineral density was increased in both the trabecular and cortical bone compartments in nestin-ERα(-/-) mice compared with controls. Femoral bone strength was increased in nestin-ERα(-/-) mice, as demonstrated by increased stiffness and maximal load of failure. The high bone mass phenotype in nestin-ERα(-/-) mice was mainly caused by increased bone formation. Serum leptin levels were elevated as a result of increased leptin expression in white adipose tissue (WAT) and slightly increased amount of WAT in nestin-ERα(-/-) mice. Leptin receptor mRNA levels were reduced in the hypothalamus but not in bone. In conclusion, inactivation of central ERα signaling results in increased bone mass, demonstrating that the balance between peripheral stimulatory and central inhibitory ERα actions is important for the regulation of bone mass. We propose that the increased bone mass in nestin-ERα(-/-) mice is mediated via decreased central leptin sensitivity and thereby increased secretion of leptin from WAT, which, in turn, results in increased peripheral leptin-induced bone formation.


Subject(s)
Bone and Bones/metabolism , Bone and Bones/pathology , Estrogen Receptor alpha/metabolism , Neurons/metabolism , Animals , Bone Density , Bone Remodeling , Bone and Bones/diagnostic imaging , Bone and Bones/surgery , Estrogen Receptor alpha/deficiency , Female , Follicle Stimulating Hormone/metabolism , Gene Deletion , Intermediate Filament Proteins/metabolism , Leptin/blood , Luteinizing Hormone/metabolism , Mice , Nerve Tissue Proteins/metabolism , Nestin , Organ Size , Ovariectomy , Radiography , Serotonin/metabolism , Signal Transduction , Steroids/metabolism , T-Lymphocytes/metabolism
19.
Cell Tissue Res ; 355(2): 463-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24253465

ABSTRACT

Heterotopic ossification is a pathological condition in which bone forms outside the skeletal system. It can also occur in skin, which is the case in some genetic disorders. In addition to precursor cells and the appropriate tissue environment, heterotopic ossification requires inductive signals such as bone morphogenetic proteins (BMP). BMPs are growth and differentiation factors that have the ability to induce cartilage and bone formation in ectopic sites. The objective of this study is to explore the effect of the BMP-4 homodimer and BMP-2/7 heterodimer on the osteogenic differentiation of primary mouse skin fibroblasts and hair follicle dermal papilla (DP) cells. Osteogenic differentiation was induced by osteogenic induction medium (OS) containing 10 nM dexamethasone. The effect of BMP-4 and BMP-2/7 was studied using alkaline phosphatase (ALP) and calcium assays after 1.5, 3 and 5 weeks of differentiation. Fibroblasts and DP cells were able to differentiate into osteoblast-like matrix mineralizing cells. The first visible sign of differentiation was the change of morphology from rounded to more spindle-shaped cells. BMP-4 and BMP-2/7 exposure elevated ALP activity and calcium production significantly more than OS alone. The osteogenic response to BMP-4 and BMP-2/7 was similar in fibroblasts, whereas, in DP cells, BMP-2/7 was more potent than BMP-4. OS alone could not induce osteogenic differentiation in DP cells. Clear and consistent results show that dermal fibroblasts and stem cells from the dermal papilla were capable of osteogenic differentiation. The BMP-2/7 heterodimer was significantly more effective on hair follicular dermal stem cell differentiation.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 4/pharmacology , Bone Morphogenetic Protein 7/pharmacology , Cell Differentiation/drug effects , Dermis/cytology , Fibroblasts/cytology , Osteogenesis/drug effects , Alkaline Phosphatase/metabolism , Animals , Calcium/metabolism , Dermis/drug effects , Fibroblasts/drug effects , Fibroblasts/enzymology , Hair Follicle/cytology , Male , Mice , Osseointegration/drug effects
20.
Bioengineering (Basel) ; 11(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38247951

ABSTRACT

Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 µm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 µm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.

SELECTION OF CITATIONS
SEARCH DETAIL