Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Bull Environ Contam Toxicol ; 109(1): 13-19, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35389079

ABSTRACT

Reuse options for bauxite residue include treatment of phosphorus (P)-enriched wastewaters where the P-saturated media offers fertiliser potential. However, few studies have assessed the impact on soil properties. Two types of spent P-saturated bauxite residue were applied to soil and compared to conventional superphosphate fertiliser as well as a control soil. Soil physico-chemical properties, worm Eisenia fetida L. choice tests, and Lolium perenne L. growth and elemental uptake were examined. Comparable biomass and plant content for L. perenne in the P-saturated bauxite residue treatments and those receiving superphosphate, indicated no phytotoxic effects. E. fetida L. showed a significant preference for the control soil (58 %± 2.1%) over the amended soils, indicating some form of salt stress. Overall, P-saturated bauxite residue was comparable to the superphosphate fertiliser in terms of the plant performance and soil properties, indicating the potential recycling of P from wastewaters using bauxite residue as a low-cost adsorbent.


Subject(s)
Lolium , Soil Pollutants , Aluminum Oxide , Fertilizers , Phosphorus , Plants , Soil/chemistry , Wastewater
2.
J Environ Manage ; 241: 273-283, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31009815

ABSTRACT

Bauxite residue, the by-product produced in the alumina industry, is a potential low-cost adsorbent in the removal of phosphorus (P) from aqueous solution, due to its high composition of residual iron oxides such as hematite. Several studies have investigated the performance of bauxite residue in removing P; however, the majority have involved the use of laboratory "batch" tests, which may not accurately estimate its actual performance in filter systems. This study investigated the use of rapid, small-scale column tests to predict the dissolved reactive phosphorus (DRP) removal capacity of bauxite residue when treating two agricultural waters of low (forest run-off) and high (dairy soiled water) phosphorus content. Bauxite residue was successful in the removal of DRP from both waters, but was more efficient in treating the forest run-off. The estimated service time of the column media, based on the largest column studied, was 1.08 min g-1 media for the forest run-off and 0.28 min g-1 media for the dairy soiled water, before initial breakthrough time, which was taken to be when the column effluent reached approximately 5% of the influent concentration, occurred. Metal(loid) leaching from the bauxite residue, examined using ICP-OES, indicated that aluminium and iron were the dominant metals present in the treated effluent, both of which were above the EPA parametric values (0.2 mg L-1 for both Al and Fe) for drinking water.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Agriculture , Aluminum Oxide , Metals
3.
J Chem Technol Biotechnol ; 93(9): 2498-2510, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30158737

ABSTRACT

Since the world economy has been confronted with an increasing risk of supply shortages of critical raw materials (CRMs), there has been a major interest in identifying alternative secondary sources of CRMs. Bauxite residues from alumina production are available at a multi-million tonnes scale worldwide. So far, attempts have been made to find alternative re-use applications for bauxite residues, for instance in cement / pig iron production. However, bauxite residues also constitute an untapped secondary source of CRMs. Depending on their geological origin and processing protocol, bauxite residues can contain considerable amounts of valuable elements. The obvious primary consideration for CRM recovery from such residues is the economic value of the materials contained. However, there are further benefits from re-use of bauxite residues in general, and from CRM recovery in particular. These go beyond monetary values (e.g. reduced investment / operational costs resulting from savings in disposal). For instance, benefits for the environment and health can be achieved by abatement of tailing storage as well as by reduction of emissions from conventional primary mining. Whereas certain tools (e.g. life-cycle analysis) can be used to quantify the latter, other benefits (in particular sustained social and technological development) are harder to quantify. This review evaluates strategies of bauxite residue re-use / recycling and identifies associated benefits beyond elemental recovery. Furthermore, methodologies to translate risks and benefits into quantifiable data are discussed. Ultimately, such quantitative data are a prerequisite for facilitating decision-making regarding bauxite residue re-use / recycling and a stepping stone towards developing a zero-waste alumina production process. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
J Environ Sci (China) ; 44: 189-196, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27266315

ABSTRACT

Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill, an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture (RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil (LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS+RMSM mixtures compared to the subsoil (LQS) and the RMSM were determined by physical-chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil (LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil (LQS) after 10months. According to our results the RMSM mixed into subsoil (LQS) at 20% w/w dose may be applied as surface layer of landfill cover systems.


Subject(s)
Environmental Restoration and Remediation/methods , Refuse Disposal/methods , Waste Disposal Facilities , Hungary , Soil/chemistry
5.
Sci Total Environ ; 595: 903-911, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28432990

ABSTRACT

Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases.


Subject(s)
Environmental Monitoring , Soil Microbiology , Soil/chemistry , Biodiversity , Hungary , Soil Pollutants , Trace Elements
6.
Sci Total Environ ; 563-564: 855-65, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-26850860

ABSTRACT

Biochar produced from a wide range of organic materials by pyrolysis has been reported as a means to improve soil physical properties, fertility and crop productivity. However, there is a lack of studies on the complex effects of biochar both on the degraded sandy soil physico-chemical properties and the soil biota as well as on toxicity, particularly in combined application with fertilizer and compost. A 7-week microcosm experiment was conducted to improve the quality of an acidic sandy soil combining variations in biochar types and amounts, compost and fertilizer application rates. The applied biochars were produced from different feedstocks such as grain husks, paper fibre sludge and wood screenings. The main purpose of the microcosm experiment was to assess the efficiency and applicability of different biochars as soil amendment prior to field trials and to choose the most efficient biochar to improve the fertility, biological activity and physical properties of acidic sandy soils. We complemented the methodology with ecotoxicity assessment to evaluate the possible risks to the soil as habitat for microbes, plants and animals. There was clear evidence of biochar-soil interactions positively affecting both the physico-chemical properties of the tested acidic sandy soil and the soil biota. Our results suggest that the grain husk and the paper fibre sludge biochars applied to the tested soil at 1% and 0.5 w/w% rate mixed with compost, respectively can supply a more liveable habitat for plants and soil living animals than the acidic sandy soil without treatment.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation/methods , Soil Pollutants/chemistry , Animals , Hydrogen-Ion Concentration , Invertebrates/drug effects , Microbiota/drug effects , Plants/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL