Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Kidney Int ; 104(6): 1164-1169, 2023 12.
Article in English | MEDLINE | ID: mdl-37774923

ABSTRACT

Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.


Subject(s)
Podocytes , Animals , Mice , Capillaries , Orientation, Spatial , Kidney Glomerulus , Renal Artery , Mammals
2.
Kidney Int ; 103(6): 1120-1130, 2023 06.
Article in English | MEDLINE | ID: mdl-36990215

ABSTRACT

Morphological alterations at the kidney filtration barrier increase intrinsic capillary wall permeability resulting in albuminuria. However, automated, quantitative assessment of these morphological changes has not been possible with electron or light microscopy. Here we present a deep learning-based approach for segmentation and quantitative analysis of foot processes in images acquired with confocal and super-resolution fluorescence microscopy. Our method, Automatic Morphological Analysis of Podocytes (AMAP), accurately segments podocyte foot processes and quantifies their morphology. AMAP applied to a set of kidney diseases in patient biopsies and a mouse model of focal segmental glomerulosclerosis allowed for accurate and comprehensive quantification of various morphometric features. With the use of AMAP, detailed morphology of podocyte foot process effacement was found to differ between categories of kidney pathologies, showed detailed variability between diverse patients with the same clinical diagnosis, and correlated with levels of proteinuria. AMAP could potentially complement other readouts such as various omics, standard histologic/electron microscopy and blood/urine assays for future personalized diagnosis and treatment of kidney disease. Thus, our novel finding could have implications to afford an understanding of early phases of kidney disease progression and may provide supplemental information in precision diagnostics.


Subject(s)
Deep Learning , Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Mice , Animals , Podocytes/pathology , Kidney Glomerulus/pathology , Kidney/diagnostic imaging , Kidney/pathology , Glomerulosclerosis, Focal Segmental/diagnostic imaging , Glomerulosclerosis, Focal Segmental/pathology , Kidney Diseases/diagnostic imaging , Kidney Diseases/pathology
3.
BMC Nephrol ; 24(1): 378, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114895

ABSTRACT

The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocinΔexon5) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes' foot process morphology.Mice homozygous for podocinΔexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes' slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocinΔexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels.The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex.


Subject(s)
Nephrotic Syndrome , Podocytes , Humans , Animals , Mice , Podocytes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , RNA, Messenger/metabolism
4.
J Am Soc Nephrol ; 33(1): 138-154, 2022 01.
Article in English | MEDLINE | ID: mdl-34853150

ABSTRACT

BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.


Subject(s)
Albuminuria/genetics , Genetic Predisposition to Disease/genetics , Glomerular Filtration Barrier/pathology , Intracellular Signaling Peptides and Proteins/genetics , Kidney Diseases/genetics , Membrane Proteins/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Podocytes/pathology
5.
Kidney Int ; 101(4): 733-751, 2022 04.
Article in English | MEDLINE | ID: mdl-34929254

ABSTRACT

Glomerular diseases are a major cause for chronic kidney disorders. In most cases podocyte injury is causative for disease development. Cytoskeletal rearrangements and morphological changes are hallmark features of podocyte injury and result in dedifferentiation and loss of podocytes. Here, we establish a link between the Par3 polarity complex and actin regulators necessary to establish and maintain podocyte architecture by utilizing mouse and Drosophila models to characterize the functional role of Par3A and Par3B and its fly homologue Bazooka in vivo. Only simultaneous inactivation of both Par3 proteins caused a severe disease phenotype. Rescue experiments in Drosophila nephrocytes revealed atypical protein kinase C (aPKC)-Par6 dependent and independent effects. While Par3A primarily acts via aPKC-Par6, Par3B function was independent of Par6. Actin-associated synaptopodin protein levels were found to be significantly upregulated upon loss of Par3A/B in mouse podocytes. Tropomyosin2, which shares functional similarities with synaptopodin, was also elevated in Bazooka depleted nephrocytes. The simultaneous depletion of Bazooka and Tropomyosin2 resulted in a partial rescue of the Bazooka knockdown phenotype and prevented increased Rho1-GTP, a member of a GTPase protein family regulating the cytoskeleton. The latter contribute to the nephrocyte phenotype observed upon loss of Bazooka. Thus, we demonstrate that Par3 proteins share a high functional redundancy but also have specific functions. Par3A acts in an aPKC-Par6 dependent way and regulates RhoA-GTP levels, while Par3B exploits Par6 independent functions influencing synaptopodin localization. Hence, Par3A and Par3B link elements of polarity signaling and actin regulators to maintain podocyte architecture.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins , Podocytes , Actins/metabolism , Animals , Cell Polarity , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Guanosine Triphosphate/metabolism , Membrane Proteins/genetics , Mice , Podocytes/metabolism , Protein Kinase C
6.
Kidney Int ; 100(5): 1054-1062, 2021 11.
Article in English | MEDLINE | ID: mdl-34332959

ABSTRACT

Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Animals , Kidney Glomerulus , Mice , Stress, Mechanical
7.
Kidney Int ; 99(4): 1010-1020, 2021 04.
Article in English | MEDLINE | ID: mdl-33285146

ABSTRACT

In recent years, many light-microscopy protocols have been published for visualization of nanoscale structures in the kidney. These protocols present researchers with new tools to evaluate both foot process anatomy and effacement, as well as protein distributions in foot processes, the slit diaphragm and in the glomerular basement membrane. However, these protocols either involve the application of different complicated super resolution microscopes or lengthy sample preparation protocols. Here, we present a fast and simple, five-hour long procedure for three-dimensional visualization of kidney morphology on all length scales. The protocol combines optical clearing and tissue expansion concepts to produce a mild swelling, sufficient for resolving nanoscale structures using a conventional confocal microscope. We show that the protocol can be applied to visualize a wide variety of pathologic features in both mouse and human kidneys. Thus, our fast and simple protocol can be beneficial for conventional microscopic evaluation of kidney tissue integrity both in research and possibly in future clinical routines.


Subject(s)
Kidney Glomerulus , Kidney , Animals , Kidney/diagnostic imaging , Mice , Microscopy
8.
FASEB J ; 33(3): 4089-4096, 2019 03.
Article in English | MEDLINE | ID: mdl-30496703

ABSTRACT

The central role of calcium signaling during development of early vertebrates is well documented, but little is known about its role in mammalian embryogenesis. We have used immunofluorescence and time-lapse calcium imaging of cultured explanted embryonic rat kidneys to study the role of calcium signaling for branching morphogenesis. In mesenchymal cells, we recorded spontaneous calcium activity that was characterized by irregular calcium transients. The calcium signals were dependent on release of calcium from intracellular stores in the endoplasmic reticulum. Down-regulation of the calcium activity, both by blocking the sarco-endoplasmic reticulum Ca2+-ATPase and by chelating cytosolic calcium, resulted in retardation of branching morphogenesis and a reduced formation of primitive nephrons but had no effect on cell proliferation. We propose that spontaneous calcium activity contributes with a stochastic factor to the self-organizing process that controls branching morphogenesis, a major determinant of the ultimate number of nephrons in the kidney.-Fontana, J. M., Khodus, G. R., Unnersjö-Jess, D., Blom, H., Aperia, A., Brismar, H. Spontaneous calcium activity in metanephric mesenchymal cells regulates branching morphogenesis in the embryonic kidney.


Subject(s)
Calcium Signaling , Embryonic Stem Cells/metabolism , Kidney/metabolism , Morphogenesis , Animals , Endoplasmic Reticulum/metabolism , Kidney/cytology , Kidney/embryology , Rats , Rats, Sprague-Dawley , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Kidney Int ; 93(4): 1008-1013, 2018 04.
Article in English | MEDLINE | ID: mdl-29241621

ABSTRACT

The glomerular filtration barrier, has historically only been spatially resolved using electron microscopy due to the nanometer-scale dimensions of these structures. Recently, it was shown that the nanoscale distribution of proteins in the slit diaphragm can be resolved by fluorescence based stimulated emission depletion microscopy, in combination with optical clearing. Fluorescence microscopy has advantages over electron microscopy in terms of multiplex imaging of different epitopes, and also the amount of volumetric data that can be extracted from thicker samples. However, stimulated emission depletion microscopy is still a costly technique commonly not available to most life science researchers. An imaging technique with which the glomerular filtration barrier can be visualized using more standard fluorescence imaging techniques is thus desirable. Recent studies have shown that biological tissue samples can be isotropically expanded, revealing nanoscale localizations of multiple epitopes using confocal microscopy. Here we show that kidney samples can be expanded sufficiently to study the finest elements of the filtration barrier using confocal microscopy. Thus, our result opens up the possibility to study protein distributions and foot process morphology on the effective nanometer-scale.


Subject(s)
Glomerular Filtration Barrier/pathology , Glomerulonephritis/pathology , Microscopy, Confocal , Microscopy, Fluorescence , Tissue Expansion/methods , Animals , Autoantibodies , Biomarkers/metabolism , Collagen Type IV/immunology , Collagen Type IV/metabolism , Disease Models, Animal , Fluorescent Antibody Technique, Indirect , Glomerular Filtration Barrier/immunology , Glomerular Filtration Barrier/metabolism , Glomerulonephritis/immunology , Glomerulonephritis/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice, Transgenic , Rats
10.
Kidney Int ; 89(1): 243-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26444032

ABSTRACT

The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane, and endothelium, is a key component for renal function. Previously, the subtlest elements of the filtration barrier have only been visualized using electron microscopy. However, electron microscopy is mostly restricted to ultrathin two-dimensional samples, and the possibility to simultaneously visualize multiple different proteins is limited. Therefore, we sought to implement a super-resolution immunofluorescence microscopy protocol for the study of the filtration barrier in the kidney. Recently, several optical clearing methods have been developed making it possible to image through large volumes of tissue and even whole organs using light microscopy. Here we found that hydrogel-based optical clearing is a beneficial tool to study intact renal tissue at the nanometer scale. When imaging samples using super-resolution STED microscopy, the staining quality was critical in order to assess correct nanoscale information. The signal-to-noise ratio and immunosignal homogeneity were both improved in optically cleared tissue. Thus, STED of slit diaphragms in fluorescently labeled, optically cleared, intact kidney samples is a new tool for studying the glomerular filtration barrier in health and disease.


Subject(s)
Glomerular Filtration Barrier/chemistry , Hydrogels , Molecular Imaging/methods , Animals , Fluorescent Dyes , Intracellular Signaling Peptides and Proteins/analysis , Membrane Proteins/analysis , Microscopy, Confocal , Microscopy, Fluorescence , Nephritis/metabolism , Rats , Signal-To-Noise Ratio , Staining and Labeling
11.
Sci Rep ; 14(1): 13019, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844492

ABSTRACT

In recent years functional multiphoton (MP) imaging of vital mouse tissues and stimulation emission depletion (STED) imaging of optically cleared tissues allowed new insights into kidney biology. Here, we present a novel workflow where MP imaging of calcium signals can be combined with super-resolved STED imaging for morphological analysis of the slit diaphragm (SD) within the same glomerulus. Mice expressing the calcium indicator GCaMP3 in podocytes served as healthy controls or were challenged with two different doses of nephrotoxic serum (NTS). NTS induced glomerular damage in a dose dependent manner measured by shortening of SD length. In acute kidney slices (AKS) intracellular calcium levels increased upon disease but showed a high variation between glomeruli. We could not find a clear correlation between intracellular calcium levels and SD length in the same glomerulus. Remarkably, analysis of the SD morphology of glomeruli selected during MP calcium imaging revealed a higher percentage of completely disrupted SD architecture than estimated by STED imaging alone. Our novel co-imaging protocol is applicable to a broad range of research questions. It can be used with different tissues and is compatible with diverse reporters and target proteins.


Subject(s)
Calcium , Kidney Glomerulus , Microscopy, Fluorescence, Multiphoton , Podocytes , Animals , Podocytes/metabolism , Calcium/metabolism , Mice , Kidney Glomerulus/metabolism , Kidney Glomerulus/ultrastructure , Microscopy, Fluorescence, Multiphoton/methods
12.
Sci Rep ; 14(1): 2292, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280906

ABSTRACT

Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.


Subject(s)
Glomerulonephritis , Podocytes , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Glomerulonephritis/pathology , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Toll-Like Receptors/metabolism
13.
Nat Commun ; 15(1): 1752, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409190

ABSTRACT

Stromal cells support epithelial cell and immune cell homeostasis and play an important role in inflammatory bowel disease (IBD) pathogenesis. Here, we quantify the stromal response to inflammation in pediatric IBD and reveal subset-specific inflammatory responses across colon segments and intestinal layers. Using data from a murine dynamic gut injury model and human ex vivo transcriptomic, protein and spatial analyses, we report that PDGFRA+CD142-/low fibroblasts and monocytes/macrophages co-localize in the intestine. In primary human fibroblast-monocyte co-cultures, intestinal PDGFRA+CD142-/low fibroblasts foster monocyte transition to CCR2+CD206+ macrophages through granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte-derived CCR2+CD206+ cells from co-cultures have a phenotype similar to intestinal CCR2+CD206+ macrophages from newly diagnosed pediatric IBD patients, with high levels of PD-L1 and low levels of GM-CSF receptor. The study describes subset-specific changes in stromal responses to inflammation and suggests that the intestinal stroma guides intestinal macrophage differentiation.


Subject(s)
Inflammatory Bowel Diseases , Monocytes , Humans , Animals , Mice , Child , Monocytes/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Cell Differentiation
14.
Methods Mol Biol ; 2664: 185-199, 2023.
Article in English | MEDLINE | ID: mdl-37423991

ABSTRACT

Morphological alterations to the kidney filter, particularly to podocyte foot processes, are seen in most types of glomerular diseases. Due to the nanoscale dimensions of the filter, visualization of such alterations has historically relied on electron microscopy. However, with recent technical development, it is now possible to also visualize podocyte foot processes, as well as other parts of the kidney filtration barrier, with light microscopy. With developments both in sample preparation, imaging, and image analysis, these new tools are becoming increasingly applied in kidney research, due to their demonstrated quantitative potential. We here present an overview of these protocols that can be applied to samples that have been fixed and stored using most standard procedures used today (i.e., PFA fixed, fresh frozen, formalin-fixed and paraffin-embedded (FFPE)). We additionally introduce tools for quantitative image analysis of foot process morphology and foot process effacement.


Subject(s)
Kidney Diseases , Podocytes , Humans , Kidney Glomerulus , Kidney , Microscopy, Electron
15.
Commun Biol ; 6(1): 208, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813870

ABSTRACT

αKlotho (Klotho) has well established renoprotective effects; however, the molecular pathways mediating its glomerular protection remain incompletely understood. Recent studies have reported that Klotho is expressed in podocytes and protects glomeruli through auto- and paracrine effects. Here, we examined renal expression of Klotho in detail and explored its protective effects in podocyte-specific Klotho knockout mice, and by overexpressing human Klotho in podocytes and hepatocytes. We demonstrate that Klotho is not significantly expressed in podocytes, and transgenic mice with either a targeted deletion or overexpression of Klotho in podocytes lack a glomerular phenotype and have no altered susceptibility to glomerular injury. In contrast, mice with hepatocyte-specific overexpression of Klotho have high circulating levels of soluble Klotho, and when challenged with nephrotoxic serum have less albuminuria and less severe kidney injury compared to wildtype mice. RNA-seq analysis suggests an adaptive response to increased endoplasmic reticulum stress as a putative mechanism of action. To evaluate the clinical relevance of our findings, the results were validated in patients with diabetic nephropathy, and in precision cut kidney slices from human nephrectomies. Together, our data reveal that the glomeruloprotective effects of Klotho is mediated via endocrine actions, which increases its therapeutic potential for patients with glomerular diseases.


Subject(s)
Diabetic Nephropathies , Podocytes , Humans , Mice , Animals , Kidney Glomerulus , Diabetic Nephropathies/metabolism , Kidney/metabolism , Albuminuria/metabolism , Mice, Transgenic , Mice, Knockout
16.
Kidney360 ; 3(3): 446-454, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35582181

ABSTRACT

Background: Diseases of the glomeruli, the renal filtration units, are a leading cause of progressive kidney disease. Assessment of the ultrastructure of podocytes at the glomerular filtration barrier is essential for diagnosing diverse disease entities, providing insight into the disease pathogenesis, and monitoring treatment responses. Methods: Here we apply previously published sample preparation methods together with stimulated emission depletion and confocal microscopy for resolving nanoscale podocyte substructure. The protocols are modified and optimized in order to be applied to formalin-fixed paraffin-embedded (FFPE) samples. Results: We successfully modified our protocols to allow for deep three-dimensional stimulated emission depletion and confocal imaging of FFPE kidney tissue with similar staining and image quality compared with our previous approaches. We further show that quantitative analysis can be applied to extract morphometrics from healthy and diseased samples from both mice and humans. Conclusions: The results from this study could increase the feasibility of implementing optical kidney imaging protocols in clinical routines because FFPE is the gold-standard method for storage of patient samples.


Subject(s)
Kidney , Podocytes , Animals , Glomerular Filtration Barrier , Humans , Kidney/diagnostic imaging , Mice , Microscopy, Confocal , Paraffin Embedding , Podocytes/pathology
17.
Nat Commun ; 12(1): 2141, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837218

ABSTRACT

Molecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


Subject(s)
Endothelial Cells/metabolism , Glomerular Mesangium/metabolism , Podocytes/metabolism , Protein Biosynthesis/genetics , Transcriptome/physiology , Animals , Cell Separation , Computational Biology , Flow Cytometry , Genetic Heterogeneity , Glomerular Mesangium/cytology , Humans , Male , Mice , RNA-Seq , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Phospholipase A2/genetics , Single-Cell Analysis , Species Specificity
18.
Sci Rep ; 10(1): 20037, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208756

ABSTRACT

Podocytes are critical for the maintenance of kidney ultrafiltration barrier and play a key role in the progression of glomerular diseases. Although mediator complex proteins have been shown to be important for many physiological and pathological processes, their role in kidney tissue has not been studied. In this study, we identified a mediator complex protein 22 (Med22) as a renal podocyte cell-enriched molecule. Podocyte-specific Med22 knockout mouse showed that Med22 was not needed for normal podocyte maturation. However, it was critical for the maintenance of podocyte health as the mice developed progressive glomerular disease and died due to renal failure. Detailed morphological analyses showed that Med22-deficiency in podocytes resulted in intracellular vacuole formation followed by podocyte loss. Moreover, Med22-deficiency in younger mice promoted the progression of glomerular disease, suggesting Med22-mediated processes may have a role in the development of glomerulopathies. This study shows for the first time that mediator complex has a critical role in kidney physiology.


Subject(s)
Kidney Diseases/mortality , Kidney Glomerulus/pathology , Mediator Complex/antagonists & inhibitors , Mortality, Premature/trends , Podocytes/pathology , Vacuoles/pathology , Adult , Animals , Humans , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Glomerulus/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Mice , Mice, Knockout , Podocytes/metabolism , Vacuoles/metabolism
19.
Nat Metab ; 2(5): 461-474, 2020 05.
Article in English | MEDLINE | ID: mdl-32694662

ABSTRACT

Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.


Subject(s)
Albuminuria/etiology , Renal Insufficiency, Chronic/complications , Albuminuria/genetics , Albuminuria/pathology , Animals , Capillaries , Disease Models, Animal , Female , Genotype , Glomerular Filtration Barrier , Glomerular Filtration Rate , Humans , Kidney Glomerulus/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Theoretical , Podocytes/pathology , Podocytes/ultrastructure , RNA/genetics , Renal Insufficiency, Chronic/pathology , Vasodilation
20.
Sci Rep ; 9(1): 8888, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31221975

ABSTRACT

Podocytes have an important role in the pathogenesis of diabetic nephropathy (DN). Podocyte foot process effacement, mediated largely by the actin-based cytoskeleton of foot processes, is commonly detected in DN and is believed to be a key pathogenic event in the development of proteinuria. In this study, we identified coronin 2b (Coro2b), a member of known actin-regulating proteins, the coronins, as a highly podocyte-enriched molecule located at the cytoplasmic side of the apical plasma membrane. Studies in human renal biopsies show that glomerular Coro2b expression is significantly down-regulated in patients with DN. Studies in knockout mice indicate that Coro2b is not required for the development or maintenance of the glomerular filtration barrier. Moreover, inactivation of Coro2b specifically in podocytes does not affect the outcome of nephropathy in a streptozotocin-induced diabetes model. However, Coro2b seems to modulate the reorganization of foot processes under pathological conditions as Coro2b knockout podocytes are partially protected from protamine sulfate perfusion-induced foot process effacement. Taken together, our study suggests a role for Coro2b in the pathogenesis of glomerulopathies. Further studies regarding the involvement of Coro2b in podocyte health and diseases are warranted.


Subject(s)
Diabetic Foot/metabolism , Diabetic Nephropathies/metabolism , Down-Regulation , Microfilament Proteins/metabolism , Podocytes/metabolism , Protamines/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL