Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 14(1): 5938, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741852

ABSTRACT

GPR61 is an orphan GPCR related to biogenic amine receptors. Its association with phenotypes relating to appetite makes it of interest as a druggable target to treat disorders of metabolism and body weight, such as obesity and cachexia. To date, the lack of structural information or a known biological ligand or tool compound has hindered comprehensive efforts to study GPR61 structure and function. Here, we report a structural characterization of GPR61, in both its active-like complex with heterotrimeric G protein and in its inactive state. Moreover, we report the discovery of a potent and selective small-molecule inverse agonist against GPR61 and structural elucidation of its allosteric binding site and mode of action. These findings offer mechanistic insights into an orphan GPCR while providing both a structural framework and tool compound to support further studies of GPR61 function and modulation.


Subject(s)
Drug Inverse Agonism , GTP-Binding Proteins , Receptors, G-Protein-Coupled , Allosteric Site , Appetite , Binding Sites , GTP-Binding Proteins/metabolism , Humans , Receptors, G-Protein-Coupled/agonists
2.
Bioorg Med Chem Lett ; 20(2): 689-93, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19962892

ABSTRACT

A series of quinoline-3-carboxamide containing sulfones was prepared and found to have good binding affinity for LXRbeta and moderate binding selectivity over LXRalpha. The 8-Cl quinoline analog 33 with a high TPSA score, displayed 34-fold binding selectivity for LXRbeta over LXRalpha (LXRbeta IC(50)=16nM), good activity for inducing ABCA1 gene expression in a THP macrophage cell line, desired weak potency in the LXRalpha Gal4 functional assay, and low blood-brain barrier penetration in rat.


Subject(s)
Blood-Brain Barrier/metabolism , Orphan Nuclear Receptors/agonists , Quinolines/chemistry , Sulfones/chemistry , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Binding Sites , Cell Line , Computer Simulation , Humans , Hydrogen Bonding , Liver X Receptors , Orphan Nuclear Receptors/metabolism , Protein Binding , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokinetics
3.
Bioorg Med Chem Lett ; 20(9): 2903-7, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20382019

ABSTRACT

A series of 4-(3-biaryl)quinolines with sulfone substituents on the terminal aryl ring (8) was prepared as potential LXR agonists. High affinity LXRbeta ligands with generally modest binding selectivity over LXRalpha and excellent agonist potency in LXR functional assays were identified. Many compounds had LXRbeta binding IC(50) values <10 nM while the most potent had EC(50) values <1.0 nM in an ABCA1 mRNA induction assay in J774 mouse cells with efficacy comparable to T0901317. Sulfone 8a was further evaluated in LDL (-/-) mice and shown to reduce atherosclerotic lesion progression.


Subject(s)
Orphan Nuclear Receptors/agonists , Quinolines/chemistry , Sulfones/chemistry , Animals , Atherosclerosis/drug therapy , Binding Sites , Cell Line , Computer Simulation , Humans , Lipoproteins, LDL/deficiency , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Liver X Receptors , Mice , Mice, Knockout , Microsomes/metabolism , Orphan Nuclear Receptors/metabolism , Rats , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/therapeutic use
4.
Bioorg Med Chem Lett ; 20(1): 209-12, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19932617

ABSTRACT

A series of 4-(3-aryloxyaryl)quinolines with sulfone substituents on the terminal aryl ring (7) was prepared as LXR agonists. High affinity LXR ligands with excellent agonist potency and efficacy in functional assays of LXR activity were identified. In general, these sulfone agonists were equal to or superior to previously described alcohol and amide analogs in terms of affinity, functional potency, and microsomal stability. Many of the sulfones had LXRbeta binding IC(50) values <10nM while the most potent compounds in an ABCA1 mRNA induction assay in J774 mouse cells had EC(50) values <10nM and were as efficacious as T0901317.


Subject(s)
Orphan Nuclear Receptors/agonists , Quinolines/chemistry , Sulfones/chemistry , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Binding Sites , Cell Line , Computer Simulation , Humans , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacology , Hydrogen Bonding , Liver X Receptors , Mice , Microsomes, Liver/metabolism , Orphan Nuclear Receptors/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfones/chemical synthesis , Sulfones/pharmacology
5.
J Chem Inf Model ; 50(6): 1123-33, 2010 Jun 28.
Article in English | MEDLINE | ID: mdl-20578728

ABSTRACT

Due to the high attrition rate of central nervous system drug candidates during clinical trials, the assessment of blood-brain barrier (BBB) penetration in early research is particularly important. A genetic approximation (GA)-based regression model was developed for predicting in vivo blood-brain partitioning data, expressed as logBB (log[brain]/[blood]). The model was built using an in-house data set of 193 compounds assembled from 22 different therapeutic projects. The final model (cross-validated r(2) = 0.72) with five molecular descriptors was selected based on validation using several large internal and external test sets. We demonstrate the potential utility of the model by applying it to a set of literature reported secretase inhibitors. In addition, we describe a rule-based approach for rapid assessment of brain penetration with several simple molecular descriptors.


Subject(s)
Blood-Brain Barrier/metabolism , Computational Biology , Quantitative Structure-Activity Relationship , Algorithms , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Blood-Brain Barrier/drug effects , Diffusion , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Models, Biological , Pharmaceutical Preparations/metabolism , Regression Analysis
6.
J Comput Aided Mol Des ; 24(3): 237-56, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20361239

ABSTRACT

CYP2D6 is an important enzyme that is involved in first pass metabolism and is responsible for metabolizing ~25% of currently marketed drugs. A homology model of CYP2D6 was built using X-ray structures of ligand-bound CYP2C5 complexes as templates. This homology model was used in docking studies to rationalize and predict the site of metabolism of known CYP2D6 substrates. While the homology model was generally found to be in good agreement with the recently solved apo (ligand-free) X-ray structure of CYP2D6, significant differences between the structures were observed in the B' and F-G helical region. These structural differences are similar to those observed between ligand-free and ligand-bound structures of other CYPs and suggest that these conformational changes result from induced-fit adaptations upon ligand binding. By docking to the homology model using Glide, it was possible to identify the correct site of metabolism for a set of 16 CYP2D6 substrates 85% of the time when the 5 top scoring poses were examined. On the other hand, docking to the apo CYP2D6 X-ray structure led to a loss in accuracy in predicting the sites of metabolism for many of the CYP2D6 substrates considered in this study. These results demonstrate the importance of describing substrate-induced conformational changes that occur upon binding. The best results were obtained using Glide SP with van der Waals scaling set to 0.8 for both the receptor and ligand atoms. A discussion of putative binding modes that explain the distribution of metabolic sites for substrates, as well as a relationship between the number of metabolic sites and substrate size, are also presented. In addition, analysis of these binding modes enabled us to rationalize the typical hydroxylation and O-demethylation reactions catalyzed by CYP2D6 as well as the less common N-dealkylation.


Subject(s)
Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/metabolism , Models, Chemical , Amino Acid Sequence , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding/drug effects , Protein Conformation , Substrate Specificity
7.
Bioorg Med Chem ; 17(4): 1663-70, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19162487

ABSTRACT

A series of 4-(amido-biarylether)-quinolines was prepared as potential LXR agonists. Appropriate substitution with amide groups provided high affinity LXR ligands, some with excellent potency and efficacy in functional assays of LXR activity. Novel amide 4g had a binding IC(50)=1.9 nM for LXRbeta and EC(50)=34 nM (96% efficacy relative to T0901317) in an ABCA1 gene expression assay in mouse J774 cells, demonstrating that 4-(biarylether)-quinolines with appropriate amide substitution are potent LXR agonists.


Subject(s)
DNA-Binding Proteins/agonists , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Cell Line , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Kinetics , Ligands , Liver X Receptors , Mice , Models, Molecular , Orphan Nuclear Receptors , Quinolines/chemical synthesis , Quinolines/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation/drug effects , Transfection
8.
Bioorg Med Chem ; 17(23): 8086-92, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19853462

ABSTRACT

A series of 4-(3-aryloxyaryl)quinolines with alcohol substituents on the terminal aryl ring was prepared as potential LXR agonists, in which an alcohol group replaced an amide in previously reported amide analogs. High affinity LXR ligands with excellent agonist potency and efficacy in a functional model of LXR activity were identified, demonstrating that alcohols can substitute for amides while retaining LXR activity. The most potent compound was 5b which had an IC(50)=3.3 nM for LXRbeta binding and EC(50)=12 nM (122% efficacy relative to T0901317) in an ABCA1 mRNA induction assay in J774 mouse cells.


Subject(s)
Alcohols/chemical synthesis , Models, Molecular , Orphan Nuclear Receptors/metabolism , Quinolines/chemical synthesis , Alcohols/chemistry , Alcohols/pharmacology , Animals , Binding, Competitive/physiology , Cell Line , Liver X Receptors , Macrophages , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Orphan Nuclear Receptors/agonists , Quinolines/chemistry , Quinolines/pharmacology
9.
10.
Proteins ; 66(2): 422-35, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17068803

ABSTRACT

Proper accounting of the positional/orientational/conformational entropy loss associated with protein-ligand binding is important to obtain reliable predictions of binding affinity. Herein, we critically examine two simplified statistical mechanics-based approaches, namely a constant penalty per rotor method, and a more rigorous method, referred to here as the partition function-based scoring (PFS) method, to account for such entropy losses in high-throughput docking calculations. Our results on the estrogen receptor beta and dihydrofolate reductase proteins demonstrate that, while the constant penalty method over-penalizes molecules for their conformational flexibility, the PFS method behaves in a more "DeltaG-like" manner by penalizing different rotors differently depending on their residual entropy in the bound state. Furthermore, in contrast to no entropic penalty or the constant penalty approximation, the PFS method does not exhibit any bias towards either rigid or flexible molecules in the hit list. Preliminary enrichment studies using a lead-like random molecular database suggest that an accurate representation of the "true" energy landscape of the protein-ligand complex is critical for reliable predictions of relative binding affinities by the PFS method.


Subject(s)
Algorithms , Entropy , Protein Binding , Binding Sites , Diethylstilbestrol/metabolism , Diethylstilbestrol/pharmacology , Estrogen Antagonists/metabolism , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Genistein/metabolism , Humans , Inhibitory Concentration 50 , Ligands , Models, Molecular , Molecular Structure , Protein Conformation , Rotation , Temperature , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/metabolism
11.
J Med Chem ; 49(21): 6151-4, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034119

ABSTRACT

A structure-based approach was used to optimize our new class of quinoline LXR modulators leading to phenyl acetic acid substituted quinolines 15 and 16. Both compounds displayed good binding affinity for LXRbeta and LXRalpha and were potent activators in LBD transactivation assays. The compounds also increased expression of ABCA1 and stimulated cholesterol efflux in THP-1 cells. Quinoline 16 showed good oral bioavailability and in vivo efficacy in a LDLr knockout mouse model for lesions.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Atherosclerosis/drug therapy , DNA-Binding Proteins/agonists , Phenylacetates/chemical synthesis , Quinolines/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , Animals , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Drug Stability , Female , Humans , In Vitro Techniques , Ligands , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors , Phenylacetates/chemistry , Phenylacetates/pharmacology , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Structure-Activity Relationship , Transcriptional Activation
12.
Structure ; 12(12): 2197-207, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15576033

ABSTRACT

We present X-ray crystallographic and molecular modeling studies of estrogen receptors-alpha and -beta complexed with the estrogen receptor-beta-selective phytoestrogen genistein, and coactivator-derived NR box peptides containing an LXXLL motif. We demonstrate that the ligand binding mode is essentially identical when genistein is bound to both isoforms, despite the considerably weaker affinity of this ligand for estrogen receptor-alpha. In addition, we examine subtle differences between binding site residues, providing an explanation for why genistein is modestly selective for the beta isoform. To this end, we also present the results of quantum chemical studies and thermodynamic arguments that yield insight to the nature of the interactions leading to estrogen receptor-beta selectivity. The importance of our analysis to structure-based drug design is discussed.


Subject(s)
Estrogen Receptor beta/metabolism , Genistein/metabolism , Computer Simulation , Crystallography, X-Ray , Estrogen Receptor beta/chemistry , Genistein/chemistry , Humans , Models, Molecular , Protein Structure, Tertiary
13.
J Steroid Biochem Mol Biol ; 88(1): 17-26, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15026080

ABSTRACT

The two known estrogen receptors, ER alpha and ER beta, are hormone inducible transcription factors that have distinct roles in regulating cell proliferation and differentiation. The natural ligand, 17 beta-estradiol (E2), binds with high affinity to both ER alpha and ER beta. However, a close analogue, 16 alpha-iodo-17 beta-estradiol (16 alpha IE2) showed about 10-fold selectivity for ER alpha over ER beta. From X-ray studies, it has been shown that the ligand-binding domains (LBD) of the two receptors are strikingly similar, and that only two changes fall within the binding cavity (ER alpha Leu384 to ER beta Met336, and ER alpha Met421 to ER beta Ile373). To understand the molecular basis for the ER alpha selectivity of 16 alpha IE2, mutants and chimeras of ER alpha and ER beta were generated, and ligand-binding and transactivation functions were studied. The ER alpha Leu384 Met mutant behaved like ER alpha WT in the presence of 16 alpha IE2; whereas the profile of the ER alpha Met421 Ile mutant was similar to that of ER beta WT. The ER beta mutant Ile373 Met behaved like ER alpha with 16 alpha IE2. The results clearly demonstrate the role of ER alpha Met421 in the ER alpha selectivity of 16 alpha IE2.


Subject(s)
Estradiol/analogs & derivatives , Estradiol/metabolism , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Amino Acid Sequence , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Computational Biology , Conserved Sequence , Estrogen Receptor alpha , Estrogen Receptor beta , Humans , Ligands , Liver Neoplasms/pathology , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Models, Theoretical , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Structure, Tertiary , Receptors, Estrogen/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Transcriptional Activation
14.
J Med Chem ; 53(8): 3296-304, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20350005

ABSTRACT

A series of phenyl sulfone substituted quinoxaline were prepared and the lead compound 13 (WYE-672) was shown to be a tissue selective LXR Agonist. Compound 13 demonstrated partial agonism for LXRbeta in kidney HEK-293 cells but did not activate Gal4 LXRbeta fusion proteins in huh-7 liver cells. Although 13 showed potent binding affinity to LXRbeta (IC(50) = 53 nM), it had little binding affinity for LXRalpha (IC(50) > 1.0 microM) and did not recruit any coactivator/corepressor peptides in the LXRalpha multiplex assay. However, compound 13 showed good agonism in THP-1 cells with respect to increasing ABCA1 gene expression and good potency on cholesterol efflux in THP-1 foam cells. In an eight-week lesion study in LDLR -/- mice, compound 13 showed reduction of aortic arch lesion progression and no plasma or hepatic triglyceride increase. These results suggest quinoxaline 13 may have an improved biological profile for potential use as a therapeutic agent.


Subject(s)
Orphan Nuclear Receptors/agonists , Quinoxalines/chemical synthesis , Sulfones/chemical synthesis , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , Animals , Area Under Curve , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cell Line , Cholesterol/metabolism , Duodenum/metabolism , Half-Life , Humans , Kidney/metabolism , Liver/metabolism , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Organ Specificity , Orphan Nuclear Receptors/genetics , Quinoxalines/chemistry , Quinoxalines/pharmacology , Radioligand Assay , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Transcriptional Activation , Triglycerides/metabolism
15.
J Med Chem ; 53(4): 1774-87, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20095622

ABSTRACT

In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.


Subject(s)
Azepines/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Indoles/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Azepines/pharmacokinetics , Azepines/pharmacology , Biological Availability , Cell Line , Cholesterol, LDL/blood , Female , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca mulatta , Male , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Solubility , Structure-Activity Relationship , Triglycerides/blood
16.
J Med Chem ; 52(4): 908-11, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19175320

ABSTRACT

Rotigaptide (3) is an antiarrhythmic peptide that improves cardiac conduction by modifying gap-junction communication. Small molecule gap-junction modifiers with improved physical properties were identified from a Zealand Pharma peptide library using pharmaceutical profiling, established SAR around 3, and a putative pharmacophore model for rotigaptide. Activity of the compounds was confirmed in a mouse cardiac conduction block model of arrhythmia. Dipeptide 9f (GAP-134) was identified as a potent, orally active gap-junction modifier for clinical development.


Subject(s)
Anti-Arrhythmia Agents/chemistry , Atrial Fibrillation/drug therapy , Benzamides/pharmacology , Gap Junctions/drug effects , Proline/analogs & derivatives , Administration, Oral , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Benzamides/chemistry , Benzamides/therapeutic use , Dipeptides/chemistry , Dipeptides/pharmacology , Dipeptides/therapeutic use , Disease Models, Animal , Drug Discovery , Mice , Peptide Library , Proline/chemistry , Proline/pharmacology , Proline/therapeutic use , Structure-Activity Relationship
17.
J Med Chem ; 51(22): 7161-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18973288

ABSTRACT

A series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency. Compound 13 reduced aortic lesion area in LDLR knockout mice equivalently to 3 or positive control 2 (GW3965). In a 7-day hamster model, compound 13 showed a lesser propensity for plasma TG elevation than 3, when the compounds were compared at doses in which they elevated ABCA1 and ABCG1 gene expression in duodenum and liver at equal levels. In contrast to results previously published for 2, the lack of TG effect of 13 correlated with its inability to increase liver fatty acid synthase (FAS) gene expression, which was up-regulated 4-fold by 3. These results suggest indazoles such as 13 may have an improved profile for potential use as a therapeutic agent.


Subject(s)
Arteriosclerosis/drug therapy , DNA-Binding Proteins/agonists , Indazoles/pharmacology , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Triglycerides/biosynthesis , Animals , Arteriosclerosis/metabolism , Cell Differentiation/drug effects , Cell Line , Cricetinae , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Humans , Hydrogen Bonding , Indazoles/chemical synthesis , Indazoles/chemistry , Ligands , Liver/drug effects , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Structure-Activity Relationship , Triglycerides/blood
18.
Bioorg Med Chem Lett ; 17(1): 118-22, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17049855

ABSTRACT

The design, synthesis, and biological evaluation of the 2-phenyl-isoindole-1,3-diones will be discussed. Detailed modeling studies with X-ray support were used to understand the ligand binding orientation and observed selectivity.


Subject(s)
Estrogen Receptor beta/agonists , Indoles/chemistry , Phthalimides/chemistry , Crystallography, X-Ray , Estrogen Receptor beta/chemistry , Humans , Indoles/chemical synthesis , Ligands , Phthalimides/chemical synthesis
19.
Bioorg Med Chem Lett ; 17(14): 4053-6, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17482813

ABSTRACT

A new class of estrogen receptor beta (ERbeta) ligands based on the 6H-chromeno[4,3-b]quinoline scaffold has been prepared. Several C7-substituted analogues displayed high affinity and modest selectivity for ERbeta.


Subject(s)
Estrogen Receptor beta/metabolism , Quinolines/metabolism , Ligands , Models, Molecular
20.
Bioorg Med Chem ; 15(10): 3321-33, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17391964

ABSTRACT

A series of phenyl acetic acid based quinolines was prepared as LXR modulators. An SAR study in which the C-3 and C-8 positions of the quinoline core were varied led to the identification of two potent LXR agonists 23 and 27. Both compounds displayed good binding affinity for LXRbeta and LXRalpha, and increased expression of ABCA1 in THP-1 cells. These two compounds also had desirable pharmacokinetic profiles in mice and displayed in vivo efficacy in a 12-week Apo E knockout mouse lesion model.


Subject(s)
Atherosclerosis/prevention & control , DNA-Binding Proteins/agonists , Phenylacetates/chemical synthesis , Phenylacetates/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , CHO Cells , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , DNA-Binding Proteins/genetics , Humans , Indicators and Reagents , Liver X Receptors , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/genetics , Recombinant Proteins/metabolism , Solvents , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL