Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34625475

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Macaca fascicularis/immunology , Primate Diseases/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/diagnostic imaging , Lung/immunology , Lung/virology , Macaca fascicularis/virology , Male , Primate Diseases/virology , SARS-CoV-2/physiology , Tomography, X-Ray Computed/methods , Virus Shedding/immunology , Virus Shedding/physiology
2.
J Virol ; 96(22): e0133922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36314828

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, the precise mechanisms leading to HTLV-1 chronic infection and the onset of the diseases have remained unclear, and effective vaccines for inhibiting the infection and the progression of pathogenesis have therefore not been developed. The use of a nonhuman primate (NHP) model is thought to be important for revealing the mechanisms of the progressive status and for the development of prevention procedures. In this study, we developed a cynomolgus macaque (CM) model of HTLV-1 infection by direct intravenous inoculation of HTLV-1-producing cells derived from ATL patients. The cell line used for infection, ATL-040, was selected as the most infectious one in our cell line library. CMs inoculated intravenously with 1 × 108 ATL-040 cells per animal became persistently infected with HTLV-1, as shown by the HTLV-1 provirus load (PVL) in peripheral blood mononuclear cells and HTLV-1-specific antibodies (2/2 animals). One CM inoculated intravenously with 1 × 107 ATL-040 cells did not have detectable PVLs despite the fact that anti-HTLV-1 antibodies were maintained for more than 2 years. Furthermore, immunological approaches, including CD8+ T cell depletion prior to infection (3/3 animals) and intrathecal inoculation (3/3 animals), led to increased proviral loads in the cynomolgus monkeys. The present method and the cynomolgus monkey model of HTLV-1 infection will be beneficial for immunological and virological studies on HTLV-1 aiming at the development of anti-HTLV-1 prophylactic vaccines and therapy drugs. IMPORTANCE HTLV-1 was discovered in the 1980s as the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, the precise mechanisms leading to HTLV-1 chronic infection and the onset of the diseases still remain unidentified. Thus, no effective vaccines to inhibit the infection and the progressive of pathogenesis have been developed. The use of appropriate animal models is essential for understanding HTLV-1 infection and pathogenesis. In order to establish a new nonhuman primate model for studies on HTLV-1 infection, cynomolgus monkeys were infected with HTLV-1 under a variety of experimental conditions. Our method, using a cell line generated from an ATL patient as a source of HTLV-1, was able to establish HTLV-1 infection in monkeys with a 100% success rate. This cynomolgus macaque model of HTLV-1 infection will contribute to the elucidation of HTLV-1 infection and its associated disease development.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Paraparesis, Tropical Spastic , Animals , Humans , Cell Line , Leukocytes, Mononuclear , Macaca fascicularis , Paraparesis, Tropical Spastic/pathology , Proviruses , Disease Models, Animal
3.
J Immunol ; 205(11): 3023-3036, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33097574

ABSTRACT

Recently, the efficacy of Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is being reassessed in accordance with the achievements of clinical tuberculosis (TB) vaccine research. However, the mechanisms ultimately determining the success or failure of BCG vaccination to prevent pulmonary TB remain poorly understood. In this study, we analyzed the protective effects of intradermal BCG vaccination by using specific pathogen-free cynomolgus macaques of Asian origin that were intradermally vaccinated with BCG (Tokyo strain) followed by Mycobacterium tuberculosis (Erdman strain) infection. Intradermal BCG administration generated TB Ag-specific multifunctional CD4 T cell responses in peripheral blood and bronchoalveolar lavage and almost completely protected against the development of TB pathogenesis with aggravation of clinical parameters and high levels of bacterial burdens in extrapulmonary organs. However, interestingly, there were no differences in bacterial quantitation and pathology of extensive granulomas in the lungs between BCG-vaccinated monkeys and control animals. These results indicated that the changes in clinical parameters, immunological responses, and quantitative gross pathology that are used routinely to determine the efficacy of TB vaccines in nonhuman primate models might not correlate with the bacterial burden and histopathological score in the lung as measured in this study.


Subject(s)
BCG Vaccine/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Animals , Antigens, Bacterial/immunology , Bronchoalveolar Lavage/methods , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Macaca fascicularis , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Pneumonia/immunology , Vaccination/methods
4.
Int J Mol Sci ; 23(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36430481

ABSTRACT

Zika virus (ZIKV) outbreaks in Central and South America caused severe public health problems in 2015 and 2016. These outbreaks were finally contained through several methods, including mosquito control using insecticides and repellents. Additionally, the development of herd immunity in these countries might have contributed to containing the epidemic. While ZIKV is mainly transmitted by mosquito bites and mucosal transmission via bodily fluids, including the semen of infected individuals, has also been reported. We evaluated the effect of mucosal ZIKV infection on continuous subcutaneous challenges in a cynomolgus monkey model. Repeated intravaginal inoculations of ZIKV did not induce detectable viremia or clinical symptoms, and all animals developed a potent neutralizing antibody, protecting animals from the subsequent subcutaneous superchallenge. These results suggest that viral replication at mucosal sites can induce protective immunity without causing systemic viremia or symptoms.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/epidemiology , Macaca fascicularis , Viremia , Antibodies, Neutralizing
5.
J Virol ; 93(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30567982

ABSTRACT

A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/drug effects , HIV-1/drug effects , Capsid/metabolism , Capsid Proteins/metabolism , Cell Line , HIV Seropositivity/drug therapy , Humans , Jurkat Cells , Mutation/drug effects , Pentacyclic Triterpenes , Succinates/pharmacology , Triterpenes/pharmacology , Virion/drug effects , Virus Assembly/drug effects , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/metabolism , Betulinic Acid
6.
J Virol ; 90(2): 972-8, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26537676

ABSTRACT

UNLABELLED: Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE: HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs.


Subject(s)
HIV Core Protein p24/metabolism , HIV-1/physiology , Mutation, Missense , Protein Processing, Post-Translational , Virus Assembly , Cryoelectron Microscopy , Electron Microscope Tomography , HIV Core Protein p24/genetics , HIV-1/genetics , HIV-1/ultrastructure , Peptides
7.
Antimicrob Agents Chemother ; 60(1): 190-7, 2016 01.
Article in English | MEDLINE | ID: mdl-26482309

ABSTRACT

Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , HIV-1/drug effects , Succinates/pharmacology , Triterpenes/pharmacology , Virion/drug effects , gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Alkylation , Amination , Amino Acid Sequence , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Capsid/drug effects , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Drug Resistance, Viral/drug effects , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , HIV-1/metabolism , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , Polymorphism, Genetic , Structure-Activity Relationship , Succinates/chemical synthesis , Succinates/chemistry , T-Lymphocytes/drug effects , T-Lymphocytes/virology , Triterpenes/chemical synthesis , Triterpenes/chemistry , Virion/genetics , Virion/metabolism , Virus Replication/drug effects , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
8.
Biochem Biophys Res Commun ; 475(1): 113-8, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27178216

ABSTRACT

The conformational dynamics of the HIV-1 envelope glycoprotein gp120 and gp41 (Env) remains poorly understood. Here we examined how the V3 loop conformation is regulated in the liganded state using a panel of recombinant HIV-1NL4-3 clones bearing HIV-1AD8 Env by two experimental approaches, one adopting a monoclonal neutralizing antibody KD-247 (suvizumab) that recognizes the tip of the V3 loop, and the other assessing the function of the V3 loop. A significant positive correlation of the Env-KD-247 binding was detected between the liganded and unliganded conditions. Namely, the mutation D163G located in the V2 loop, which enhances viral susceptibility to KD-247 by 59.4-fold, had little effect on the sCD4-induced increment of the virus-KD-247 binding. By contrast, a virus with the S370N mutation in the C3 region increased the virus-KD-247 binding by 91.4-fold, although it did not influence the KD-247-mediated neutralization. Co-receptor usage and the susceptibility to CCR5 inhibitor Maraviroc were unaffected by D163G and S370N mutations. Collectively, these data suggest that the conformation of the liganded V3-loop of HIV-1AD8 Env is still under regulation of other Env domains aside from the V3 loop, including V2 and C3. Our results give an insight into the structural properties of HIV-1 Env and viral resistance to entry inhibitors by non-V3 loop mutations.


Subject(s)
HIV Infections/virology , HIV-1/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/chemistry , HIV-1/genetics , Humans , Models, Molecular , Point Mutation , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
9.
Sci Transl Med ; 15(711): eadi2623, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37647387

ABSTRACT

The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Macaca fascicularis
10.
Biochem Biophys Res Commun ; 424(3): 519-23, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22771581

ABSTRACT

The toll-like receptor (TLR)-7 has been shown to sense the retroviral infection. However, a surrogate sensor has been implicated. We examined whether retrovirus serves as a TLR3 ligand in human cells by utilizing cell lines LNCaP and PC-3 lacking TLR7, and the xenotropic murine leukemia virus-relamoted virus (XMRV) insensitive to human tripartite motif-containing (TRIM) 5, a newly characterized pattern recognition receptor (PRR). A dominant-negative TLR3 or a chemical inhibitor of TLR3 attenuated the XMRV-induced IP-10/CXCL10 expression, a marker of TLR3 response. These data clearly indicated that retroviral infection exemplified by XMRV activates the TLR3 signal in human cells.


Subject(s)
Genome, Viral/immunology , Retroviridae Infections/immunology , Retroviridae/immunology , Toll-Like Receptor 3/immunology , Cell Line , Humans , Retroviridae/genetics , Xenotropic murine leukemia virus-related virus/genetics , Xenotropic murine leukemia virus-related virus/immunology
11.
Bioorg Med Chem ; 20(10): 3287-91, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22507207

ABSTRACT

An artificial antigen forming the C34 trimeric structure targeting membrane-fusion mechanism of HIV-1 has been evaluated as an HIV vaccine. The C34 trimeric molecule was previously designed and synthesized using a novel template with C3-symmetric linkers by us. The antiserum produced by immunization of the C34 trimeric form antigen showed 23-fold higher binding affinity for the C34 trimer than for the C34 monomer and showed significant neutralizing activity. The present results suggest effective strategies of the design of HIV vaccines and anti-HIV agents based on the native structure mimic of proteins targeting dynamic supramolecular mechanisms in HIV fusion.


Subject(s)
AIDS Vaccines/chemistry , HIV Antibodies/immunology , HIV Envelope Protein gp41/immunology , Peptide Fragments/immunology , AIDS Vaccines/genetics , Amino Acid Sequence , Animals , Anti-HIV Agents/chemistry , Cell Line , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , HIV Antigens/chemistry , HIV Antigens/immunology , HIV Envelope Protein gp41/chemical synthesis , Humans , Immunization , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neutralization Tests , Peptide Fragments/chemical synthesis
12.
Chem Pharm Bull (Tokyo) ; 60(6): 764-71, 2012.
Article in English | MEDLINE | ID: mdl-22689429

ABSTRACT

Reverse transcriptase of human immunodeficiency virus type 1 (HIV-1) has two enzymatic functions. One of the functions is ribonuclease (RNase) H activity concerning the digestion of only RNA of RNA/DNA hybrid. The RNase H activity is an attractive target for a new class of anti-HIV drugs because no approved inhibitor is available now. In our previous studies, an agent bearing 5-nitro-furan-2-carboxylic acid ester core was found from chemical screening and dozens of the derivatives were synthesized to improve compound potency. In this work, some parts of the chemical structure were modulated to deepen our understanding of the structure-activity relationship of the analogous compounds. Several derivatives having nitro-furan-phenyl-ester skeleton were shown to be potent RNase H inhibitors. Attaching methoxy-carbonyl and methoxy groups to the phenyl ring increased the inhibitory potency. No significant cytotoxicity was observed for these active derivatives. In contrast, the derivatives having nitro-furan-benzyl-ester skeleton showed modest inhibitory activities regardless of attaching diverse kinds of functional groups to the benzyl ring. Both the modulation of the 5-nitro-furan-2-carboxylic moiety and the conversion of the ester linkage resulted in a drastic decrease in inhibitory potency. These findings are informative for designing potent inhibitors of RNase H enzymatic activity of HIV-1.


Subject(s)
Anti-HIV Agents/chemistry , Enzyme Inhibitors/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Quantum Theory , Ribonuclease H/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Cell Line , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure
13.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Article in English | MEDLINE | ID: mdl-35013573

ABSTRACT

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Subject(s)
Diet, High-Fat , Macrophages , Adipose Tissue , Animals , Diet, High-Fat/adverse effects , Lipids , Macaca fascicularis/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism
14.
Cancer Sci ; 102(6): 1236-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21392167

ABSTRACT

Immunocompromised individuals, including those infected with human immunodeficiency virus (HIV), are at increased risk of Epstein-Barr virus (EBV)-associated aggressive B cell malignancies such as Burkitt's lymphoma (BL) or diffuse large B cell lymphoma (DLBCL). Differential diagnosis of these lymphomas requires histopathological, immunohistochemical and cytogenetic assessments. Rapid, less invasive approaches to the diagnosis of EBV-associated B cell lymphomas are needed. Here, high-throughput cytokine profiling of BL cell lines and EBV-transformed B lymphoblastoid cell lines (B-LCL), representing DLBCL, was carried out. By monitoring the production of 42 different cytokines, unique cytokine signatures were identified for BL and B-LCL/DLBCL. The BL cells produced interleukin (IL)-10, 10 kDa interferon gamma-induced protein (IP-10)/CXCL10, macrophage-derived chemokine (MDC)/CCL22, macrophage inflammatory protein (MIP)-1α/CCL3 and MIP-1ß/CCL4. In addition to these five cytokines, the cytokine signature of B-LCL/DLBCL cells included IL-8/CXCL8, IL-13, platelet-derived growth factor (PDGF)-AA, and regulated upon activation, normal T cell expressed and secreted (RANTES)/CCL5. Epstein-Barr virus latency was responsible for the increased production of IL-10, MDC/CCL22 and MIP-1α/CCL3 in BL cells, suggesting that EBV-mediated BL-genesis involves these three cytokines. These results suggest that high-throughput cytokine profiling might be a valuable tool for the differential diagnosis and might deepen our understanding of the pathogenesis of EBV-associated B cell malignancies.


Subject(s)
Burkitt Lymphoma/diagnosis , Cytokines/biosynthesis , Herpesvirus 4, Human/physiology , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/immunology , Virus Latency , Burkitt Lymphoma/immunology , Burkitt Lymphoma/pathology , Burkitt Lymphoma/virology , Cell Line, Tumor , Cell Transformation, Viral , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Humans , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/virology
15.
Antimicrob Agents Chemother ; 55(9): 4251-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21746942

ABSTRACT

Human immunodeficiency virus (HIV) Gag protein targets to the plasma membrane and assembles into viral particles. In the next round of infection, the mature Gag capsids disassemble during viral entry. Thus, Gag plays a central role in the HIV life cycle. Using a yeast membrane-associated two-hybrid assay based on the SOS-RAS signaling system, we developed a system to measure the Gag-Gag interaction and isolated 6 candidates for Gag assembly inhibitors from a chemical library composed of 20,000 small molecules. When tested in the human MT-4 cell line and primary peripheral blood mononuclear cells, one of the candidates, 2-(benzothiazol-2-ylmethylthio)-4-methylpyrimidine (BMMP), displayed an inhibitory effect on HIV replication, although a considerably high dose was required. Unexpectedly, neither particle production nor maturation was inhibited by BMMP. Confocal microscopy confirmed that BMMP did not block Gag plasma membrane targeting. Single-round infection assays with envelope-pseudotyped and luciferase-expressing viruses revealed that BMMP inhibited HIV replication postentry but not simian immunodeficiency virus (SIV) or murine leukemia virus infection. Studies with HIV/SIV Gag chimeras indicated that the Gag capsid (CA) domain was responsible for the BMMP-mediated HIV postentry block. In vitro studies indicated that BMMP accelerated disassembly of HIV cores and, conversely, inhibited assembly of purified CA protein in a dose-dependent manner. Collectively, our data suggest that BMMP primarily targets the HIV CA domain and disrupts viral infection postentry, possibly through inducing premature disassembly of HIV cores. We suggest that BMMP is a potential lead compound to develop antiretroviral drugs bearing novel mechanisms of action.


Subject(s)
HIV-1/drug effects , Two-Hybrid System Techniques , Virus Replication/drug effects , Anti-HIV Agents/pharmacology , Benzothiazoles/pharmacology , Cell Line , Gene Products, gag/metabolism , HIV-1/physiology , Humans , Microscopy, Confocal , Pyrimidines/pharmacology
16.
Eur J Immunol ; 40(5): 1504-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20162549

ABSTRACT

HIV replication is restricted by some anti-CD4 mouse mAb in vitro and in vivo. However, a human monoclonal anti-CD4 Ab has not been isolated. We screened EBV-transformed peripheral B cells from 12 adult donors for CD4-reactive Ab production followed by functional reconstitution of Fab genes. Three independent IgM Fab clones reactive specifically to CD4 were isolated from a healthy HIV-seronegative adult (approximately 0.0013% of the peripheral B cells). The germ line combinations for the VH and VL genes were VH3-33/L6, VH3-33/L12, and VH4-4/L12, respectively, accompanied by somatic hypermutations. Genetic analysis revealed a preference for V-gene usage to develop CD4-reactive Ab. Notably, one of the CD4-reactive clones, HO538-213, with an 1 x 10(-8) M dissociation constant (Kd) to recombinant human CD4, limited the replication of R5-tropic and X4-tropic HIV-1 strains at 1-2.5 microg/mL in primary mononuclear cells. This is the first clonal genetic analysis of human monoclonal CD4-reactive Ab. A mAb against CD4 isolated from a healthy individual could be useful in the intervention of HIV/AIDS.


Subject(s)
Antibodies, Monoclonal/immunology , CD4 Antigens/immunology , HIV Seronegativity/immunology , HIV-1/drug effects , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin M/immunology , Virus Replication/drug effects , Adult , Antibodies, Monoclonal/isolation & purification , Antibody Specificity , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cell Line, Transformed , Cell Transformation, Viral , Clone Cells/immunology , HIV-1/immunology , HIV-1/physiology , Herpesvirus 4, Human/physiology , Humans , Immunity, Innate , Virus Replication/immunology
17.
Bioorg Med Chem ; 19(2): 816-25, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21193314

ABSTRACT

Rapid emergence of drug-resistant variants is one of the most serious problems in chemotherapy for HIV-1 infectious diseases. Inhibitors acting on a target not addressed by approved drugs are of great importance to suppress drug-resistant viruses. HIV-1 reverse transcriptase has two enzymatic functions, DNA polymerase and RNase H activities. The RNase H activity is an attractive target for a new class of antiviral drugs. On the basis of the hit chemicals found in our previous screening with 20,000 small molecular-weight compounds, we synthesized derivatives of 5-nitro-furan-2-carboxylic acid. Inhibition of RNase H enzymatic activity was measured in a biochemical assay with real-time monitoring of florescence emission from the digested RNA substrate. Several derivatives showed higher inhibitory activities that those of the hit chemicals. Modulation of the 5-nitro-furan-2-carboxylic moiety resulted in a drastic decrease in inhibitory potency. In contrast, many derivatives with modulation of other parts retained inhibitory activities to varying degrees. These findings suggest the binding mode of active derivatives, in which three oxygen atoms aligned in a straight form at the nitro-furan moiety are coordinated to two divalent metal ions located at RNase H reaction site. Hence, the nitro-furan-carboxylic moiety is one of the critical scaffolds for RNase H inhibition. Of note, the RNase H inhibitory potency of a derivative was improved by 18-fold compared with that of the original hit compound, and no significant cytotoxicity was observed for most of the derivatives showing inhibitory activity. Since there is still much room for modification of the compounds at the part opposite the nitro-furan moiety, further chemical conversion will lead to improvement of compound potency and specificity.


Subject(s)
Furans/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Reverse Transcriptase Inhibitors/chemistry , Ribonuclease H/antagonists & inhibitors , Binding Sites , Cell Line , Crystallography, X-Ray , Furans/chemical synthesis , Furans/toxicity , HIV Reverse Transcriptase/metabolism , Humans , Protein Structure, Tertiary , Quantum Theory , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/toxicity , Ribonuclease H/metabolism
18.
Cancer Sci ; 101(4): 876-81, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20132216

ABSTRACT

The oncogenic human herpes virus, the Epstein-Barr virus (EBV), expresses EBNA1 in almost all forms of viral latency. EBNA1 plays a major role in the maintenance of the viral genome and in the transactivation of viral transforming genes, including EBNA2 and latent membrane protein (LMP-1). However, it is unknown whether inhibition of EBNA1 from the onset of EBV infection disrupts the establishment of EBV's latency and transactivation of the viral oncogenes. To address this, we measured EBV infection kinetics in the B cell lines BALL-1 and BJAB, which stably express a dominant-negative EBNA1 (dnE1) fused to green fluorescent protein (GFP). The EBV genome was surprisingly unstable 1 week post-infection: the average loss rate of EBV DNA from GFP- and GFP-dnE1-expressing cells was 53.4% and 41.0% per cell generation, respectively, which was substantially higher than that of an 'established'oriP replicon (2-4%). GFP-dnE1 did not accelerate loss of the EBV genome, suggesting that EBNA1-dependent licensing of the EBV genome occurs infrequently during the acute phase of EBV infection. In the subacute phase, establishment of EBV latency was completely blocked in GFP-dnE1-expressing cells. In contrast, C/W promoter-driven transcription was strongly restricted in GFP-dnE1-expressing cells at 2 days post-infection. These data suggest that inhibition of EBNA1 from the onset of EBV infection is effective in blocking the positive feedback loop in the transactivation of viral transforming genes, and in eradicating the EBV genome during the subacute phase. Our results suggest that gene transduction of GFP-dnE1 could be a promising therapeutic and prophylactic approach toward EBV-associated malignancies.


Subject(s)
Cell Transformation, Viral , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/physiology , Gene Expression Profiling , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Viral Proteins/pharmacology , Acute Disease , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Burkitt Lymphoma/virology , Cell Line, Tumor , Epstein-Barr Virus Infections/virology , Gene Expression , Genes, Viral , Genome, Viral , Herpesvirus 4, Human/immunology , Humans , Oncogenes , Transcriptional Activation , Virus Latency/genetics , Virus Latency/immunology
19.
Bioorg Med Chem ; 18(18): 6771-5, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20708407

ABSTRACT

Structure-activity relationship studies were conducted on HIV integrase (IN) inhibitory peptides which were found by the screening of an overlapping peptide library derived from HIV-1 gene products. Since these peptides located in the second helix of Vpr are considered to have an alpha-helical conformation, Glu-Lys pairs were introduced into the i and i+4 positions to increase the helicity of the lead compound possessing an octa-arginyl group. Ala-scan was also performed on the lead compound for the identification of the amino acid residues responsible for the inhibitory activity. The results indicated the importance of an alpha-helical structure for the expression of inhibitory activity, and presented a binding model of integrase and the lead compound.


Subject(s)
HIV Integrase Inhibitors/chemistry , Peptides/chemistry , vpr Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Sequence , Cell Line , Circular Dichroism , Glutamic Acid/chemistry , HIV Integrase Inhibitors/pharmacology , Humans , Lysine/chemistry , Molecular Sequence Data , Peptides/pharmacology , Structure-Activity Relationship
20.
Cancer Sci ; 100(1): 95-102, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19018754

ABSTRACT

CXCR4, a G-protein-coupled receptor of CXCL12/stromal cell-derived factor-1alpha, mediates a wide range of physiological and pathological processes, including the targeted metastasis of cancer cells. CXCR4 has been shown to homo-oligomerize in several experimental systems. However, it remains unclear with which domains CXCR4 interacts homotypically, and whether it dimerizes or forms a higher-order complex. To address these issues, we used bioluminescent resonance energy transfer and bimolecular fluorescence complementation analyses to measure the homotypic interactions of CXCR4 in living cells. Both assays indicated that CXCR4 interacts homotypically, which is consistent with previous studies. By studying CXCR4 mutants lacking various domains, we found that multiple transmembrane domains probably serve as potential molecular interaction surfaces for oligomerization. The relative contribution of the amino- or carboxy-termini to oligomerization was small. To differentiate between a dimer and a multimer consisting of more than two molecules, bioluminescent resonance energy transfer-bimolecular fluorescence complementation analysis was conducted. It revealed that CXCR4 engages in higher-order oligomerization in a ligand-independent fashion. This is the first report providing direct experimental evidence for the higher-order multimerization of CXCR4 in vivo. We hypothesize that CXCR4 distributes to the cell surface as a multimer, in order to effectively sense, with increased avidity, the chemotaxis-inducing ligand in the microenvironment. Studying the structure and function of the oligomeric state of CXCR4 may lead us to develop novel CXCR4 inhibitors that disassemble the molecular cluster of CXCR4.


Subject(s)
Receptors, CXCR4/chemistry , Base Sequence , Dimerization , Fluorescence , Humans , Ligands , Luminescent Measurements , Molecular Sequence Data , Neoplasm Metastasis , Receptors, CXCR4/physiology
SELECTION OF CITATIONS
SEARCH DETAIL