ABSTRACT
We have established a novel method to evaluate the redox properties of tea polyphenols by HPLC-coulometric-array analysis. We plotted the quantity of electricity (µC) on the vertical axis and the electric potential (mV), adjusted with the associated palladium reference electrode, on the horizontal axis to provide "quantity versus potential (QP) plot". The patterns of the plots correspond to the derivative of a hydrodynamic voltammogram or a current-voltage curve, with the electric potentials of the peaks in the QP plot corresponding to the half-wave potentials in the current-voltage curve. We confirmed that catechins and theaflavins are oxidized depending on the electric potentials of their partial structures, and found that all compounds showing a peak at 0 mV in the QP plots produce hydrogen peroxide (H2O2) during the autoxidation process.
ABSTRACT
PURPOSE: Fibronectin plays an important role in the migration of corneal epithelial cells in vivo. The Arg-Gly-Asp (RGD) sequence in the principal cell binding domain of fibronectin mediates the interaction of fibronectin with integrins, whereas the Pro-His-Ser-Arg-Asn (PHSRN) sequence of fibronectin is thought to modulate this interaction. The authors examined the effects of a PHSRN peptide on corneal epithelial migration in vitro and in vivo. METHODS: Epithelial migration in vitro was examined with the rabbit cornea in organ culture. The motility and phenotype of simian virus 40-transformed human corneal epithelial (HCE) cells were evaluated by time-lapse and immunofluorescence microscopy, respectively. Tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin was examined by immunoprecipitation and immunoblot analysis. The healing of rabbit corneal epithelial wounds induced by 1-heptanol was evaluated by fluorescein staining. RESULTS: The PHSRN peptide stimulated corneal epithelial migration in organ culture in a concentration-dependent manner, and it increased HCE cell motility in vitro. The peptide induced the accumulation of F-actin and the formation of focal adhesions at the leading edge of HCE cells. It also upregulated the tyrosine phosphorylation of FAK and paxillin in HCE cells, but it did not affect HCE cell proliferation or attachment to a fibronectin matrix. Administration of the PHSRN peptide in eye drops promoted corneal epithelial wound closure in vivo in a dose-dependent manner. None of these effects of the PHSRN peptide were induced by a control NRSHP peptide. CONCLUSIONS: The PHSRN peptide mimics many of the effects of fibronectin on corneal epithelial cells and may prove suitable as a substitute for fibronectin in the treatment of persistent corneal epithelial defects.
Subject(s)
Cell Movement/drug effects , Epithelium, Corneal/physiology , Fibronectins/pharmacology , Peptide Fragments/pharmacology , Wound Healing/drug effects , Actins/metabolism , Animals , Cell Line, Transformed , Cell Proliferation/drug effects , Cell Transformation, Viral , Dose-Response Relationship, Drug , Epithelium, Corneal/injuries , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/drug effects , Immunoprecipitation , Microscopy, Fluorescence , Organ Culture Techniques , Paxillin/metabolism , Phosphorylation , Photography , Rabbits , Tyrosine/metabolism , Up-RegulationABSTRACT
Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Myo-Inositol-1-Phosphate Synthase/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Salt Tolerance , Sodium Chloride/pharmacologyABSTRACT
Quercetin, rutin, alphaG-rutin (a water soluble flavonoid), and a mixture of rutin and alphaG-rutin were administered to rats by a single gastric intubation, and their absorption and urinary excretion were examined. The plasma and 24 h urinary levels of aglycons (quercetin and tamarixetin/isorhamnetin) were measured by HPLC after deconjugation with beta-glucuronidase/sulfatase treatment. alphaG-rutin was absorbed more rapidly than quercetin or rutin, and the plasma concentrations of quercetin and tamarixetin/isorhamnetin reached the highest peak level 30 min after dosing. Quercetin, rutin, and the mixture of rutin and alphaG-rutin showed the first peak level 8 h, 8 h, and 30 min after dosing, respectively. The area under the concentration-time curve (AUC) for quercetin in rats administered alphaG-rutin was approximately 4.5- and 2-fold higher than those in rats administered quercetin and rutin, respectively, and was almost the same as that in rats administered a mixture of rutin and alphaG-rutin. The highest 24 h urinary excretion was observed in alphaG-rutin-administered rats. These results suggest that alphaG-rutin is absorbed more efficiently than either quercetin or rutin and that a high plasma concentration can be maintained by supplying rutin and alphaG-rutin in combination.