Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Opt Express ; 32(3): 4413-4426, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297643

ABSTRACT

X-ray multi-projection imaging (XMPI) has the potential to provide rotation-free 3D movies of optically opaque samples. The absence of rotation enables superior imaging speed and preserves fragile sample dynamics by avoiding the centrifugal forces introduced by conventional rotary tomography. Here, we present our XMPI observations at the ID19 beamline (ESRF, France) of 3D dynamics in melted aluminum with 1000 frames per second and 8 µm resolution per projection using the full dynamical range of our detectors. Since XMPI is a method under development, we also provide different tests for the instrumentation of up to 3000 frames per second. As the high-brilliance of 4th generation light-sources becomes more available, XMPI is a promising technique for current and future X-ray imaging instruments.

2.
J Synchrotron Radiat ; 30(Pt 6): 1030-1037, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37729072

ABSTRACT

The high pulse intensity and repetition rate of the European X-ray Free-Electron Laser (EuXFEL) provide superior temporal resolution compared with other X-ray sources. In combination with MHz X-ray microscopy techniques, it offers a unique opportunity to achieve superior contrast and spatial resolution in applications demanding high temporal resolution. In both live visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of X-ray free-electron laser sources hinders the use of standard flat-field normalization methods during MHz X-ray microscopy experiments. Here, an online (i.e. near real-time) dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images is presented. The method is used for the normalization of individual X-ray projections and has been implemented as a near real-time analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.

3.
Opt Express ; 31(11): 18399-18406, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381551

ABSTRACT

The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second.

4.
Proc Natl Acad Sci U S A ; 117(39): 24110-24116, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32934145

ABSTRACT

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 µs at high fluences. At short times up to 20 µs we observe that the dynamics do not obey the Stokes-Einstein predictions.

5.
J Synchrotron Radiat ; 29(Pt 4): 939-946, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787559

ABSTRACT

Characterizing the properties of X-ray free-electron laser (XFEL) sources is a critical step for optimization of performance and experiment planning. The recent availability of MHz XFELs has opened up a range of new opportunities for novel experiments but also highlighted the need for systematic measurements of the source properties. Here, MHz-enabled beam imaging diagnostics developed for the SPB/SFX instrument at the European XFEL are exploited to measure the shot-to-shot intensity statistics of X-ray pulses. The ability to record pulse-integrated two-dimensional transverse intensity measurements at multiple planes along an XFEL beamline at MHz rates yields an improved understanding of the shot-to-shot photon beam intensity variations. These variations can play a critical role, for example, in determining the outcome of single-particle imaging experiments and other experiments that are sensitive to the transverse profile of the incident beam. It is observed that shot-to-shot variations in the statistical properties of a recorded ensemble of radiant intensity distributions are sensitive to changes in electron beam current density. These changes typically occur during pulse-distribution to the instrument and are currently not accounted for by the existing suite of imaging diagnostics. Modulations of the electron beam orbit in the accelerator are observed to induce a time-dependence in the statistics of individual pulses - this is demonstrated by applying radio-frequency trajectory tilts to electron bunch-trains delivered to the instrument. We discuss how these modifications of the beam trajectory might be used to modify the statistical properties of the source and potential future applications.

6.
J Synchrotron Radiat ; 29(Pt 5): 1273-1283, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36073887

ABSTRACT

Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported. The temporal and spatial stability of this instrumentation is also presented.


Subject(s)
Lasers , Crystallography, X-Ray , Radiography , X-Rays
7.
Opt Express ; 30(7): 10633-10644, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473025

ABSTRACT

X-ray free-electron lasers (XFELs) provide high-brilliance pulses, which offer unique opportunities for coherent X-ray imaging techniques, such as in-line holography. One of the fundamental steps to process in-line holographic data is flat-field correction, which mitigates imaging artifacts and, in turn, enables phase reconstructions. However, conventional flat-field correction approaches cannot correct single XFEL pulses due to the stochastic nature of the self-amplified spontaneous emission (SASE), the mechanism responsible for the high brilliance of XFELs. Here, we demonstrate on simulated and megahertz imaging data, measured at the European XFEL, the possibility of overcoming such a limitation by using two different methods based on principal component analysis and deep learning. These methods retrieve flat-field corrected images from individual frames by separating the sample and flat-field signal contributions; thus, enabling advanced phase-retrieval reconstructions. We anticipate that the proposed methods can be implemented in a real-time processing pipeline, which will enable online data analysis and phase reconstructions of coherent full-field imaging techniques such as in-line holography at XFELs.

8.
Opt Express ; 29(13): 19593-19604, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266067

ABSTRACT

Phase retrieval approaches based on deep learning (DL) provide a framework to obtain phase information from an intensity hologram or diffraction pattern in a robust manner and in real-time. However, current DL architectures applied to the phase problem rely on i) paired datasets, i. e., they are only applicable when a satisfactory solution of the phase problem has been found, and ii) the fact that most of them ignore the physics of the imaging process. Here, we present PhaseGAN, a new DL approach based on Generative Adversarial Networks, which allows the use of unpaired datasets and includes the physics of image formation. The performance of our approach is enhanced by including the image formation physics and a novel Fourier loss function, providing phase reconstructions when conventional phase retrieval algorithms fail, such as ultra-fast experiments. Thus, PhaseGAN offers the opportunity to address the phase problem in real-time when no phase reconstructions but good simulations or data from other experiments are available.

9.
J Synchrotron Radiat ; 26(Pt 4): 1115-1126, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31274435

ABSTRACT

Here a direct comparison is made between various X-ray wavefront sensing methods with application to optics alignment and focus characterization at X-ray free-electron lasers (XFELs). Focus optimization at XFEL beamlines presents unique challenges due to high peak powers as well as beam pointing instability, meaning that techniques capable of single-shot measurement and that probe the wavefront at an out-of-focus location are desirable. The techniques chosen for the comparison include single-phase-grating Talbot interferometry (shearing interferometry), dual-grating Talbot interferometry (moiré deflectometry) and speckle tracking. All three methods were implemented during a single beam time at the Linac Coherent Light Source, at the X-ray Pump Probe beamline, in order to make a direct comparison. Each method was used to characterize the wavefront resulting from a stack of beryllium compound refractive lenses followed by a corrective phase plate. In addition, difference wavefront measurements with and without the phase plate agreed with its design to within λ/20, which enabled a direct quantitative comparison between methods. Finally, a path toward automated alignment at XFEL beamlines using a wavefront sensor to close the loop is presented.

10.
J Synchrotron Radiat ; 26(Pt 3): 660-676, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074429

ABSTRACT

The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation - in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.

11.
Opt Lett ; 44(7): 1650-1653, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933113

ABSTRACT

Intense, ultrashort, and high-repetition-rate X-ray pulses, combined with a femtosecond optical laser, allow pump-probe experiments with fast data acquisition and femtosecond time resolution. However, the relative timing of the X-ray pulses and the optical laser pulses can be controlled only to a level of the intrinsic error of the instrument which, without characterization, limits the time resolution of experiments. This limitation inevitably calls for a precise determination of the relative arrival time, which can be used after measurement for sorting and tagging the experimental data to a much finer resolution than it can be controlled to. The observed root-mean-square timing jitter between the X-ray and the optical laser at the SPB/SFX instrument at European XFEL was 308 fs. This first measurement of timing jitter at the European XFEL provides an important step in realizing ultrafast experiments at this novel X-ray source. A method for determining the change in the complex refractive index of samples is also presented.

12.
Opt Express ; 26(26): 34569-34579, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30650879

ABSTRACT

We present a fast and accurate method for wave propagation through a set of inclined reflecting planes. It is based on the coordinate transformation in reciprocal space leading to a diffraction integral, which can be calculated only by using two 2D Fast Fourier Transforms and one 2D interpolation. The method is numerically tested, and comparisons with standard methods show its superiority in both computational speed and accuracy. The direct application of this method is found in the X-ray phase contrast imaging using the Bragg magnifier-an optics consisting of crystals asymmetrically diffracting in Bragg geometry.

13.
Opt Express ; 25(12): 13857-13871, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788829

ABSTRACT

Third generation synchrotron light sources offer high photon flux, partial spatial coherence, and ~10-10 s pulse widths. These enable hard X-ray phase-contrast imaging (XPCI) with single-bunch temporal resolutions. In this work, we exploited the MHz repetition rates of synchrotron X-ray pulses combined with indirect X-ray detection to demonstrate the potential of XPCI with millions of frames per second multiple-frame recording. This allows for the visualization of aperiodic or stochastic transient processes which are impossible to be realized using single-shot or stroboscopic XPCI. We present observations of various phenomena, such as crack tip propagation in glass, shock wave propagation in water and explosion during electric arc ignition, which evolve in the order of km/s (µm/ns).

14.
Opt Express ; 25(15): 17892-17903, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789279

ABSTRACT

Determining fluctuations in focus properties is essential for many experiments at Self-Amplified-Spontaneous-Emission (SASE) based Free-Electron-Lasers (FELs), in particular for imaging single non-crystalline biological particles. We report on a diffractive imaging technique to fully characterize highly focused, single-shot pulses using an iterative phase retrieval algorithm, and benchmark it against an existing Hartmann wavefront sensor. The results, both theoretical and experimental, demonstrate the effectiveness of this technique to provide a comprehensive and convenient shot-to-shot measurement of focused-pulse wave fields and source-point positional variations without the need for manipulative optics between the focus and the detector.

15.
Opt Express ; 24(24): 27753-27762, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906343

ABSTRACT

We present an improved, single-distance phase retrieval algorithm applicable for holographic X-ray imaging of biological objects for an in-line germanium Bragg Magnifier Microscope (BMM). The proposed algorithm takes advantage of a modified shrink-wrap algorithm for phase objects, robust unwrapping algorithm as well as other reasonable constraints applied to the wavefield at the object and the detector plane. The performance of the algorithm is analyzed on phantom objects and the results are shown and discussed. We demonstrated the suitability of the algorithm for the phase retrieval on a more complex biological specimen Tardigrade, where we achieved successful phase retrieval from only a single hologram. The spatial resolution obtained by Fourier spectral power method for biological objects is ∼ 300 nm, the same value as obtained from the reconstructed test pattern. Our results achieved using the new algorithm confirmed the potential of BMM for in-vivo, dose-efficient single-shot imaging of biological objects.

16.
Opt Express ; 23(18): 23462-71, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26368446

ABSTRACT

X-ray grating interferometry has been highlighted in the last decade as a multi-modal X-ray phase-imaging technique for providing absorption, differential phase, and visibility-contrast images. It has been mainly reported that the visibility contrast in the visibility-contrast image originates from unresolvable random microstructures. In this paper, we show that the visibility contrast is even reduced by a uniform sample with flat surfaces due to the so-called "beam-hardening effect", which has to be taken into account when X-rays with a continuous spectrum is used. We drive a criterion for determining whether the beam-hardening effect occurs or not, and propose a method for correcting the effect of beam hardening on a visibility-contrast image.

17.
ACS Nano ; 18(24): 15576-15589, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38810115

ABSTRACT

Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable "shape envelope" among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.

18.
Nat Commun ; 15(1): 3827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714735

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Subject(s)
Catalytic Domain , Coronavirus 3C Proteases , Cysteine , Disulfides , Oxidation-Reduction , SARS-CoV-2 , Disulfides/chemistry , Disulfides/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Cysteine/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , COVID-19/virology
19.
J Synchrotron Radiat ; 20(Pt 1): 153-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23254668

ABSTRACT

The performance of a recently developed full-field X-ray micro-imaging system based on an in-line Bragg magnifier is reported. The system is composed of quasi-channel-cut crystals in combination with a Medipix single-photon-counting detector. A theoretical and experimental study of the imaging performance of the crystals-detector combination and a comparison with a standard indirect detector typically used in high-resolution X-ray imaging schemes are reported. The spatial resolution attained by our system is about 0.75 µm, limited only by the current magnification. Compared with an indirect detector system, this system features a better efficiency, signal-to-noise ratio and spatial resolution. The optimal working resolution range of this system is between ∼0.4 µm and 1 µm, filling the gap between transmission X-ray microscopes and indirect detectors. Applications for coherent full-field imaging of weakly absorbing samples are shown and discussed.


Subject(s)
Radiographic Image Enhancement/instrumentation , Holography/methods , Radiographic Image Enhancement/methods , X-Rays
20.
Ultrason Sonochem ; 101: 106715, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38061251

ABSTRACT

Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.

SELECTION OF CITATIONS
SEARCH DETAIL