Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Affiliation country
Publication year range
1.
Opt Lett ; 43(10): 2225-2228, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762559

ABSTRACT

We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10-4 cm-1 is resolvable.

2.
Opt Express ; 25(1): 486-496, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28085842

ABSTRACT

We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

3.
Opt Express ; 25(9): 10153-10165, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468390

ABSTRACT

We propose a laser feedback interferometer operating at multiple terahertz (THz) frequency bands by using a pulsed coupled-cavity THz quantum cascade laser (QCL) under optical feedback. A theoretical model that contains multi-mode reduced rate equations and thermal equations is presented, which captures the interplay between electro-optical, thermal, and feedback effects. By using the self-heating effect in both active and passive cavities, self-mixing signal responses at three different THz frequency bands are predicted. A multi-spectral laser feedback interferometry system based on such a coupled-cavity THz QCL will permit ultra-high-speed sensing and spectroscopic applications including material identification.

4.
Opt Express ; 24(19): 21948-56, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661929

ABSTRACT

We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.

5.
Opt Express ; 24(18): 20554-70, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607659

ABSTRACT

Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

6.
Sensors (Basel) ; 16(3)2016 Mar 09.
Article in English | MEDLINE | ID: mdl-27005629

ABSTRACT

We propose a self-consistent method for the analysis of granular materials at terahertz (THz) frequencies using a quantum cascade laser. The method is designed for signals acquired from a laser feedback interferometer, and applied to non-contact reflection-mode sensing. Our technique is demonstrated using three plastic explosives, achieving good agreement with reference measurements obtained by THz time-domain spectroscopy in transmission geometry. The technique described in this study is readily scalable: replacing a single laser with a small laser array, with individual lasers operating at different frequencies will enable unambiguous identification of select materials. This paves the way towards non-contact, reflection-mode analysis and identification of granular materials at THz frequencies using quantum cascade lasers.

7.
Opt Express ; 22(13): 16595-605, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977908

ABSTRACT

Discrete Vernier frequency tuning of terahertz quantum cascade lasers is demonstrated using a device comprising a two-section coupled-cavity. The two sections are separated by a narrow air gap, which is milled after device packaging using a focused ion beam. One section of the device (the lasing section) is electrically biased above threshold using a short current pulse, while the other section (the tuning section) is biased below threshold with a wider current pulse to achieve controlled localized electrical heating. The resulting thermally-induced shift in the longitudinal cavity modes of the tuning section is engineered to produce either a controllable blue shift or red shift of the emission frequency. This discrete Vernier frequency tuning far exceeds the tuning achievable from standard ridge lasers, and does not lead to any corresponding change in emitted power. Discrete tuning was observed over bandwidths of 50 and 85 GHz in a pair of devices, each using different design schemes. Interchanging the lasing and tuning sections of the same devices yielded red shifts of 20 and 30 GHz, respectively.

8.
Opt Express ; 21(19): 22194-205, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104111

ABSTRACT

The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

9.
Nat Commun ; 11(1): 835, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32047146

ABSTRACT

The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for high-frequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited to ~800 ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible.

10.
Nat Commun ; 9(1): 5181, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504849

ABSTRACT

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted the following: 'We also acknowledge support from the Australian Research Council's Discovery Projects Funding Scheme (Grant DP 160 103910).' This has been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 9(1): 3076, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082762

ABSTRACT

Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission. This approach allows us to observe hopping between lasing modes on picosecond-timescales and the temporal evolution of transient multi-mode emission into steady-state single mode emission. The underlying physics is explained through a full multi-mode, temperature-dependent carrier and photon transport model. Our results show that the fundamental limit on the timescales of frequency-switching between competing modes varies with the underlying Vernier alignment of the laser cavity.

12.
Biomed Opt Express ; 5(11): 3981-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25426324

ABSTRACT

There is considerable interest in the interrogation of biological tissue at terahertz (THz) frequencies, largely due to the contrast in the optical properties of different biological tissues which occur in this electro-magnetic radiation band. Of particular interest are THz biomedical images, which have the potential to highlight different information than those acquired in other frequency bands, thereby providing an augmented picture of biological structures. In this work, we demonstrate the feasibility of an interferometric biological imaging technique using a THz quantum cascade laser (QCL) operating at 2.59 THz to perform coherent imaging of porcine tissue samples. We show the potential of this new THz biomedical imaging technique for in vivo studies, by virtue of its reflection geometry and useful tissue penetration depth enabled by the large THz powers emitted by the quantum cascade laser used in this work. The observed clustering of interferometric tissue signatures opens a pathway towards automatic techniques for the discrimination of healthy tissue types for the study of normal physiology and possible therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL