Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Cancer ; 22(1): 639, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35689194

ABSTRACT

Malignant pleural mesothelioma, a tumor arising from the membrane covering the lungs and the inner side of the ribs, is a cancer in which genetic alterations of genes encoding proteins that act on or are part of the Hippo-YAP1 signaling pathway are frequent. Dysfunctional Hippo signaling may result in aberrant activation of the transcriptional coactivator protein YAP1, which binds to and activates transcription factors of the TEAD family. Recent studies have associated elevated YAP1 protein activity with a poor prognosis of malignant mesothelioma and its resistance to current therapies, but its role in tumor maintenance is unclear. In this study, we investigate the dependence of malignant mesothelioma on YAP1 signaling to maintain fully established tumors in vivo. We show that downregulation of YAP1 in a dysfunctional Hippo genetic background results in the inhibition of YAP1/TEAD-dependent gene expression, the induction of apoptosis, and the inhibition of tumor cell growth in vitro. The conditional downregulation of YAP1 in established tumor xenografts leads to the inhibition of YAP1-dependent gene transcription and eventually tumor regression. This effect is only seen in the YAP1-activated MSTO-211H mesothelioma xenograft model, but not in the Hippo-independent HCT116 colon cancer xenograft model. Our data demonstrate that, in the context of a Hippo pathway mutated background, YAP1 activity alone is enough to maintain the growth of established tumors in vivo, thus validating the concept of inhibiting the activated YAP1-TEAD complex for the treatment of malignant pleural mesothelioma patients.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mesothelioma/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , YAP-Signaling Proteins
2.
Mol Cancer Ther ; 14(2): 384-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25504634

ABSTRACT

Activation of the MET/HGF pathway is common in human cancer and is thought to promote tumor initiation, metastasis, angiogenesis, and resistance to diverse therapies. We report here the pharmacologic characterization of the triazolopyridazine derivative SAR125844, a potent and highly selective inhibitor of the MET receptor tyrosine kinase (RTK), for intravenous administration. SAR125844 displayed nanomolar activity against the wild-type kinase (IC50 value of 4.2 nmol/L) and the M1250T and Y1235D mutants. Broad biochemical profiling revealed that SAR125844 was highly selective for MET kinase. SAR125844 inhibits MET autophosphorylation in cell-based assays in the nanomolar range, and promotes low nanomolar proapoptotic and antiproliferative activities selectively in cell lines with MET gene amplification or pathway addiction. In two MET-amplified human gastric tumor xenograft models, SNU-5 and Hs 746T, intravenous treatment with SAR125844 leads to potent, dose- and time-dependent inhibition of the MET kinase and to significant impact on downstream PI3K/AKT and RAS/MAPK pathways. Long duration of MET kinase inhibition up to 7 days was achieved with a nanosuspension formulation of SAR125844. Daily or every-2-days intravenous treatment of SAR125844 promoted a dose-dependent tumor regression in MET-amplified human gastric cancer models at tolerated doses without treatment-related body weight loss. Our data demonstrated that SAR125844 is a potent and selective MET kinase inhibitor with a favorable preclinical toxicity profile, supporting its clinical development in patients with MET-amplified and MET pathway-addicted tumors.


Subject(s)
Azoles/pharmacology , Benzothiazoles/pharmacology , Gene Amplification/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Urea/analogs & derivatives , Adenosine Triphosphate/pharmacology , Administration, Intravenous , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Azoles/administration & dosage , Azoles/chemistry , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Mice, SCID , Mutation/genetics , Phosphorylation/drug effects , Urea/administration & dosage , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL