ABSTRACT
Disorders involving ß-globin gene mutations, primarily ß-thalassemia and sickle cell disease, represent a major target for hematopoietic stem/progenitor cell (HSPC) gene therapy. This includes CRISPR/Cas9-mediated genome editing approaches in adult CD34+ cells aimed toward the reactivation of fetal γ-globin expression in red blood cells. Because models involving erythroid differentiation of CD34+ cells have limitations in assessing γ-globin reactivation, we focused on human ß-globin locus-transgenic (ß-YAC) mice. We used a helper-dependent human CD46-targeting adenovirus vector expressing CRISPR/Cas9 (HDAd-HBG-CRISPR) to disrupt a repressor binding region within the γ-globin promoter. We transduced HSPCs from ß-YAC/human CD46-transgenic mice ex vivo and subsequently transplanted them into irradiated recipients. Furthermore, we used an in vivo HSPC transduction approach that involves HSPC mobilization and the intravenous injection of HDAd-HBG-CRISPR into ß-YAC/CD46-transgenic mice. In both models, we demonstrated efficient target site disruption, resulting in a pronounced switch from human ß- to γ-globin expression in red blood cells of adult mice that was maintained after secondary transplantation of HSPCs. In long-term follow-up studies, we did not detect hematological abnormalities, indicating that HBG promoter editing does not negatively affect hematopoiesis. This is the first study that shows successful in vivo HSPC genome editing by CRISPR/Cas9.
Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Gene Expression , Hematopoietic Stem Cells/metabolism , beta-Globins/genetics , gamma-Globins/genetics , Animals , Erythrocytes/metabolism , Female , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, GeneticABSTRACT
The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.
Subject(s)
Computer Simulation , Histones/metabolism , Human Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 2/metabolism , Histones/chemistry , Human Embryonic Stem Cells/cytology , Humans , Methylation , Polycomb Repressive Complex 2/chemistryABSTRACT
BACKGROUND: ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, is limited in its application by the large number of cells required. ChIP-seq involves extensive manipulation of sample material and multiple reactions with limited quality control at each step, therefore, scaling down the number of cells required has proven challenging. Recently, several methods have been proposed to overcome this limit but most of these methods require extensive optimization to tailor the protocol to the specific antibody used or number of cells being profiled. RESULTS: Here we describe a robust, yet facile method, which we named carrier ChIP-seq (cChIP-seq), for use on limited cell amounts. cChIP-seq employs a DNA-free histone carrier in order to maintain the working ChIP reaction scale, removing the need to tailor reactions to specific amounts of cells or histone modifications to be assayed. We have applied our method to three different histone modifications, H3K4me3, H3K4me1 and H3K27me3 in the K562 cell line, and H3K4me1 in H1 hESCs. We successfully obtained epigenomic maps for these histone modifications starting with as few as 10,000 cells. We compared cChIP-seq data to data generated as part of the ENCODE project. ENCODE data are the reference standard in the field and have been generated starting from tens of million of cells. Our results show that cChIP-seq successfully recapitulates bulk data. Furthermore, we showed that the differences observed between small-scale ChIP-seq data and ENCODE data are largely to be due to lab-to-lab variability rather than operating on a reduced scale. CONCLUSIONS: Data generated using cChIP-seq are equivalent to reference epigenomic maps from three orders of magnitude more cells. Our method offers a robust and straightforward approach to scale down ChIP-seq to as low as 10,000 cells. The underlying principle of our strategy makes it suitable for being applied to a vast range of chromatin modifications without requiring expensive optimization. Furthermore, our strategy of a DNA-free carrier can be adapted to most ChIP-seq protocols.
Subject(s)
Chromatin Immunoprecipitation/methods , Histone Code , Sequence Analysis, DNA/methods , Cell Line , Epigenomics/methods , Humans , K562 CellsABSTRACT
Recent research has revealed several important pathways of epigenetic regulation leading to transcriptional changes in bone cells. Rest Corepressor 2 (Rcor2) is a coregulator of Lysine-specific histone demethylase 1 (Lsd1), a demethylase linked to osteoblast activity, hematopoietic stem cell differentiation and malignancy of different neoplasms. However, the role of Rcor2 in osteoblast differentiation has not yet been examined in detail. We have previously shown that Rcor2 is highly expressed in mesenchymal stromal cells (MSC) and particularly in the osteoblastic lineage. The role of Rcor2 in osteoblastic differentiation in vitro was further characterized and we demonstrate here that lentiviral silencing of Rcor2 in MC3T3-E1 cells led to a decrease in osteoblast differentiation. This was indicated by decreased alkaline phosphatase and von Kossa stainings as well as by decreased expression of several osteoblast-related marker genes. RNA-sequencing of the Rcor2-downregulated MC3T3-E1 cells showed decreased repression of Rcor2 target genes, as well as significant upregulation of majority of the differentially expressed genes. While the heterozygous, global loss of Rcor2 in vivo did not lead to a detectable bone phenotype, conditional deletion of Rcor2 in limb-bud mesenchymal cells led to a moderate decrease in cortical bone volume. These findings were not accentuated by challenging bone formation by ovariectomy or tibial fracture. Furthermore, a global deletion of Rcor2 led to decreased white adipose tissue in vivo and decreased the capacity of primary cells to differentiate into adipocytes in vitro. The conditional deletion of Rcor2 led to decreased adiposity in fracture callus. Taken together, these results suggest that epigenetic regulation of mesenchymal stromal cell differentiation is mediated by Rcor2, which could thus play an important role in defining the MSC fate.
Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteoblasts , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/genetics , Mice , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Osteogenesis/physiology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Cell LineABSTRACT
A complex interplay between gene and environment influences the vulnerability or the resilience to stressful events. In the acute escape deficit (AED) paradigm, rats exposed to an acute unavoidable stress (AUS) develop impaired reactivity to noxious stimuli. Here we assessed the behavioral and molecular changes in rats exposed to AUS. A genome-wide microarray experiment generated a comprehensive picture of changes in gene expression in the hippocampus and the frontal cortex of animals exposed or not to AUS. Exposure to AUS resulted in two distinct groups of rats with opposite behavioral profiles: one developing an AED, called "stress vulnerable," and one that did not develop an AED, called "stress resilient." Genome-wide profiling revealed a low percentage of overlapping mechanisms in the two areas, suggesting that, in the presence of stress, resilience or vulnerability to AUS is sustained by specific changes in gene expression that can either buffer or promote the behavioral and molecular adverse consequences of stress. Specifically, we observed in the frontal cortex a downregulation of the transcript coding for interferon-ß and leukemia inhibitory factor in resilient rats and an upregulation of neuroendocrine related genes, growth hormone and prolactin, in vulnerable rats. In the hippocampus, the muscarinic M2 receptor was downregulated in vulnerable but upregulated in resilient rats. Our findings demonstrate that opposite behavioral responses did not correspond to opposite regulatory changes of the same genes, but resilience rather than vulnerability to stress was associated with specific changes, with little overlap, in the expression of patterns of genes.
Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Genetic Predisposition to Disease/genetics , Resilience, Psychological , Stress, Psychological/genetics , Transcription, Genetic , Animals , Cluster Analysis , Gene Expression Profiling , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain ReactionABSTRACT
Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal cells. Histone methylation is controlled by multiple lysine demethylases and is an important step in controlling local chromatin structure and gene expression. Here, we show that the lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts and that its suppression impairs osteoblast differentiation and bone nodule formation in vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was associated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1 binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to decreased osteoblast activity and disrupted primary spongiosa ossification and reorganization in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at H3K4me2 and H3K4me3 and its activity is required for proper bone formation.
Subject(s)
Histones , Osteogenesis , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Lysine/metabolism , Osteoblasts/metabolism , Osteogenesis/geneticsABSTRACT
The inner ear is a complex structure responsible for hearing and balance, and organ pathology is associated with deafness and balance disorders. To evaluate the role of epigenomic dynamics, we performed whole genome bisulfite sequencing at key time points during the development and maturation of the mouse inner ear sensory epithelium (SE). Our single-nucleotide resolution maps revealed variations in both general characteristics and dynamics of DNA methylation over time. This allowed us to predict the location of non-coding regulatory regions and to identify several novel candidate regulatory factors, such as Bach2, that connect stage-specific regulatory elements to molecular features that drive the development and maturation of the SE. Constructing in silico regulatory networks around sites of differential methylation enabled us to link key inner ear regulators, such as Atoh1 and Stat3, to pathways responsible for cell lineage determination and maturation, such as the Notch pathway. We also discovered that a putative enhancer, defined as a low methylated region (LMR), can upregulate the GJB6 gene and a neighboring non-coding RNA. The study of inner ear SE methylomes revealed novel regulatory regions in the hearing organ, which may improve diagnostic capabilities, and has the potential to guide the development of therapeutics for hearing loss by providing multiple intervention points for manipulation of the auditory system.
Subject(s)
Connexin 30/genetics , DNA Methylation/physiology , Ear, Inner/embryology , Ear, Inner/growth & development , Gene Expression Regulation, Developmental , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Deafness/genetics , Ear, Inner/cytology , Enhancer Elements, Genetic , Epithelium/embryology , Epithelium/growth & development , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , POU Domain Factors/genetics , Pregnancy , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolismABSTRACT
We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.
Subject(s)
Embryonic Stem Cells/cytology , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Neural Tube Defects/genetics , Neural Tube/embryology , Cell Line , DNA Methylation , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , NeurogenesisABSTRACT
Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3K392R, on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3K392R and healthy-control cells, but in later stages, NEUROG3 expression was upregulated prematurely in STAT3K392R cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3K392R-activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3K392R. Collectively, our results demonstrate that the STAT3K392R mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cell Differentiation/genetics , Diabetes Mellitus/genetics , Nerve Tissue Proteins/biosynthesis , STAT3 Transcription Factor/genetics , Autoimmunity/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Cas Systems , Cell Line , Diabetes Mellitus/etiology , Diabetes Mellitus/pathology , Gene Expression Regulation, Developmental , Glucagon/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Mutation , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , STAT3 Transcription Factor/biosynthesisABSTRACT
Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells, however, the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase, a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues.
Subject(s)
Abnormal Karyotype , Catalase/genetics , Gene Silencing , Pluripotent Stem Cells/metabolism , Testicular Neoplasms/genetics , Case-Control Studies , Catalase/metabolism , Cell Line , Humans , Male , Oxidative Stress , Pluripotent Stem Cells/enzymology , Testicular Neoplasms/metabolism , TranscriptomeABSTRACT
Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.
Subject(s)
Cell Differentiation/genetics , Genetic Variation , Induced Pluripotent Stem Cells/cytology , Biological Specimen Banks , DNA Methylation/genetics , Epigenesis, Genetic , Erythroid Cells/cytology , Female , Fibroblasts/metabolism , Hematopoiesis/genetics , Humans , Male , Tissue Donors , Transcription, GeneticABSTRACT
For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs). Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.