Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Environ Sci Technol ; 58(35): 15799-15806, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39171677

ABSTRACT

Reverse osmosis (RO) is increasingly used in drinking water production to effectively remove micropollutants, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, RO membranes themselves may contain PFAS, which can potentially leach into treated drinking water. Leaching experiments and direct total oxidizable precursor assays revealed the presence and leaching potential of PFOS (branched and linear), PFBA, PFHxA, PFNA, and PFOA in five selected commercial RO membranes. This resulted in the release of tens of milligrams of ΣPFAS per membrane element used in drinking water production. Depending on assumptions made regarding leaching kinetics and volume of produced water per membrane element, predicted concentrations of ΣPFAS in the produced water ranged from less than one up to hundreds of pg/L. These concentrations are two to four orders of magnitude lower than those currently observed in Dutch drinking waters. The origin of PFAS in the membranes remains unclear. Further research is needed to bridge the gap between the laboratory conditions as used in this study and the real-world conditions and for a full understanding of potential leaching scenarios. Such an understanding is critical for water producers using RO technologies to proactively manage and mitigate potential PFAS contamination.


Subject(s)
Drinking Water , Fluorocarbons , Osmosis , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Fluorocarbons/analysis , Membranes, Artificial
2.
J Environ Manage ; 368: 122108, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39146655

ABSTRACT

The current use of chemicals puts pressure on human and ecological health. Based on the Aarhus Convention, citizens have the right to have access to information on substances in their local environment. Providing this information is a major challenge, especially considering complex mixtures, as the current substance-by-substance risk assessment may not adequately address the risk of co-exposure to multiple substances. Here, we provide an overview of the currently available indicators in the Netherlands to explore current scientific possibilities to indicate the impacts of complex chemical mixtures in the environment on human health and ecology at the local scale. This is limited to impact estimates on freshwater species for 701 substances, impact estimates of four metals on soil organisms, and impacts on human health for particulate matter (PM10) and nitrogen dioxide (NO2) in air. The main limiting factors in developing and expanding these indicators to cover more compartments and substances are the availability of emission and concentration data of substances and dose-response relationships at the population (human health) or community (ecology) level. As ways forward, we propose; 1) developing cumulative assessment groups (CAGs) for substances on the European Pollutant Transfer and Release Register and Water Framework Directive substance lists, to enable the development of mixture indicators based on mixture risk assessment and concentration addition principles; 2) to gain insight into local mixtures by also applying these CAGs to emission data, which is available for soil and air for more substances than concentrations data; 3) the application of analytical non-target screening methods as well as effect-based methods for whole-mixture assessment.


Subject(s)
Environmental Monitoring , Netherlands , Humans , Risk Assessment , Particulate Matter/analysis
3.
Environ Sci Technol ; 57(8): 3062-3074, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36779784

ABSTRACT

This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Drinking Water/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Fluorocarbons/analysis , Carboxylic Acids , Alkanesulfonic Acids/analysis
4.
J Environ Manage ; 280: 111692, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33293165

ABSTRACT

With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a 'one-substance one-assessment' (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical's use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks' environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances.


Subject(s)
Environmental Pollution , Pesticides , Biodiversity , Conservation of Natural Resources , Humans , Pesticides/analysis , Risk Assessment
5.
Rev Environ Contam Toxicol ; 246: 1-32, 2019.
Article in English | MEDLINE | ID: mdl-29280081

ABSTRACT

We identify uncertainties and knowledge gaps of chemical risk assessment related to unconventional drillings and propose adaptations. We discuss how chemical risk assessment in the context of unconventional oil and gas (UO&G) activities differs from conventional chemical risk assessment and the implications for existing legislation. A UO&G suspect list of 1,386 chemicals that might be expected in the UO&G water samples was prepared which can be used for LC-HRMS suspect screening. We actualize information on reported concentrations in UO&G-related water. Most information relates to shale gas operations, followed by coal-bed methane, while only little is available for tight gas and conventional gas. The limited research on conventional oil and gas recovery hampers comparison whether risks related to unconventional activities are in fact higher than those related to conventional activities. No study analyzed the whole cycle from fracturing fluid, flowback and produced water, and surface water and groundwater. Generally target screening has been used, probably missing contaminants of concern. Almost half of the organic compounds analyzed in surface water and groundwater exceed TTC values, so further risk assessment is needed, and risks cannot be waived. No specific exposure scenarios toward groundwater aquifers exist for UO&G-related activities. Human errors in various stages of the life cycle of UO&G production play an important role in the exposure. Neither at the international level nor at the US federal and the EU levels, specific regulations for UO&G-related activities are in place to protect environmental and human health. UO&G activities are mostly regulated through general environmental, spatial planning, and mining legislation.


Subject(s)
Oil and Gas Fields , Risk Assessment/methods , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring , Humans , Hydraulic Fracking , Hydrocarbons
6.
J Environ Manage ; 231: 483-493, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30388646

ABSTRACT

The potential water demand for fracturing fluids along with the possible flowback and produced water production is assessed for the Dutch Posidonia shale. Total water demand estimated for 25 years of the field development using historic data from the U.S. plays varies between 12.2 and 36.9 Mm3. The maximal annual water consumption of 0.95-2.88 Mm3 is expected in the peak years of shale gas production. These figures are much lower than the availability of any potential water sources, which include drinking water, fresh and brackish groundwater, river water, effluents of wastewater treatment plants (WWTP) and sea water. River water is considered the most promising water source for fracturing fluids in the Dutch Posidonia shale based on its availability (>6·104 Mm3/year) and quality (only bacterial composition needs to be controlled). Total wastewater production for the whole period of the field development is estimated between 6.6 and 48.0 Mm3. Wastewater recycling can cover significant part of the source water demand for fracturing fluid. However, high mineral content of the wastewater as well as temporal and spatial discrepancies between wastewater production and water demand will form obstacles for wastewater recycling. The assessment framework developed in this study may be applied for other shale gas fields with high uncertainties regarding subsurface properties, connate formation water characteristics and future legislative framework.


Subject(s)
Groundwater , Natural Gas , Oil and Gas Fields , Wastewater , Water Cycle
7.
Environ Sci Technol ; 51(9): 4740-4754, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28376616

ABSTRACT

Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.


Subject(s)
Natural Gas , Wastewater/chemistry , Water , Water Pollutants, Chemical , Water Purification
8.
Environ Sci Technol ; 51(20): 11513-11519, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28971682

ABSTRACT

Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons.


Subject(s)
Plastics , Waste Products , Animals , Attitude , Environmental Monitoring , Humans , Risk
9.
J Environ Manage ; 193: 360-372, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28237846

ABSTRACT

Water authorities and drinking water companies are challenged with the question if, where and how to abate contaminants of emerging concern in the urban water cycle. The most effective strategy under given conditions is often unclear to these stakeholders as it requires insight into several aspects of the contaminants such as sources, properties, and mitigation options. Furthermore the various parties in the urban water cycle are not always aware of each other's requirements and priorities. Processes to set priorities and come to agreements are lacking, hampering the articulation and implementation of possible solutions. To support decision makers with this task, a decision support system was developed to serve as a point of departure for getting the relevant stakeholders together and finding common ground. The decision support system was iteratively developed in stages. Stakeholders were interviewed and a decision support system prototype developed. Subsequently, this prototype was evaluated by the stakeholders and adjusted accordingly. The iterative process lead to a final system focused on the management of contaminants of emerging concern within the urban water cycle, from wastewater, surface water and groundwater to drinking water, that suggests mitigation methods beyond technical solutions. Possible wastewater and drinking water treatment techniques in combination with decentralised and non-technical methods were taken into account in an integrated way. The system contains background information on contaminants of emerging concern such as physical/chemical characteristics, toxicity and legislative frameworks, water cycle entrance pathways and a database with associated possible mitigation methods. Monitoring data can be uploaded to assess environmental and human health risks in a specific water system. The developed system was received with great interest by potential users, and implemented in an international water cycle network.


Subject(s)
Water Quality , Water/chemistry , Environmental Monitoring , Humans , Water Pollutants, Chemical/chemistry , Water Purification
10.
Environ Sci Technol ; 49(7): 4458-65, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25760315

ABSTRACT

Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 µg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.


Subject(s)
Disinfection/methods , Water Purification/methods , Drinking Water/chemistry , Hydrogen Peroxide/chemistry , Isotope Labeling , Mass Spectrometry , Nitrates/chemistry , Nitrogen/analysis , Nitrogen/chemistry , Oxidation-Reduction , Pressure , Ultraviolet Rays
12.
Chemosphere ; 365: 143277, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39260594

ABSTRACT

Despite our growing awareness of micro-and nanoplastics presence in food and beverages, the fate of nanoplastics (NPs) in the human gastrointestinal tract (GIT) remains poorly investigated. Changes of nanoplastics size upon digestive conditions influence the potential of absorption through the intestine. In this study, polymer nanoparticles with different physicochemical properties (size, surface and chemistry) were submitted to gastrointestinal digestion (GID) simulated in vitro. Their agglomeration behaviour was measured with a unique set of analytical approaches, allowing to study NPs' interactions with the digestive enzymes. Smaller NPs agglomerated more, narrowing the overall particle size distribution of smaller and larger NPs. NPs of different polymers exhibited heteroagglomeration. Digestive enzymes interact with the NPs, forming large but fragile agglomerates. In presence of the enzymes, even acid-functionalized NPs, typically stable in harsh conditions, agglomerated similarly to the non-functionalized PS NPs. These results highlight the role of the GID in increasing the effective size of ingested NPs, potentially reducing their ability to pass through the cell membranes. Our findings address a critical knowledge gap in nanoplastics oral uptake potential, providing a solid technical foundation for their characterization.


Subject(s)
Digestion , Gastrointestinal Tract , Nanoparticles , Particle Size , Gastrointestinal Tract/metabolism , Humans , Nanoparticles/chemistry , Polymers/chemistry , Plastics/chemistry
13.
Chemosphere ; 351: 141237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242512

ABSTRACT

As a result of proposed global restrictions and regulations on current-use per-and polyfluoroalkyl substances (PFAS), research on possible alternatives is highly required. In this study, phase I in vitro metabolism of two novel prototype PFAS in human and rat was investigated. These prototype chemicals are intended to be safer-by-design and expected to mineralize completely, and thus be less persistent in the environment compared to the PFAS available on the market. Following incubation with rat liver S9 (RL-S9) fractions, two main metabolites per initial substance were produced, namely an alcohol and a short-chain carboxylic acid. While with human liver S9 (HL-S9) fractions, only the short-chain carboxylic acid was detected. Beyond these major metabolites, two and five additional metabolites were identified at very low levels by non-targeted screening for the ether- and thioether-linked prototype chemicals, respectively. Overall, complete mineralization during the in vitro hepatic metabolism of these novel PFAS by HL-S9 and RL-S9 fractions was not observed. The reaction kinetics of the surfactants was determined by using the metabolite formation, rather than the substrate depletion approach. With rat liver enzymes, the formation rates of primary metabolite alcohols were at least two orders of magnitude higher than those of secondary metabolite carboxylic acids. When incubating with human liver enzymes, the formation rates of single metabolite carboxylic acids, were similar or smaller than those experienced in rat. It also indicates that the overall metabolic rate and clearance of surfactants are significantly higher in rat liver than in human liver. The maximum formation rate of the thioether congener exceeded 10-fold that of the ether in humans but were similar in rats. Overall, the results suggest that metabolism of the prototype chemicals followed a similar trend to those reported in studies of fluorotelomer alcohols.


Subject(s)
Fluorocarbons , Liver , Rats , Humans , Animals , Liver/metabolism , Ethers , Carboxylic Acids/metabolism , Sulfides/metabolism , Surface-Active Agents/metabolism , Fluorocarbons/metabolism
14.
Anal Chem ; 85(12): 5867-74, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23705858

ABSTRACT

One of the main challenges in environmental risk assessment of fullerenes is to develop analytical methods that detect and quantify fullerenes at low concentrations. In this paper we report on the development and optimization of a highly specific, robust, and relatively simple method for the quantitative determination of C60, C70, and six functionalized fullerenes, namely, [6,6]-phenyl-C61-butyric acid methyl ester, [6,6]-phenyl-C61-butyric acid butyl ester, [6,6]-phenyl-C61-butyric acid octyl ester, [6,6]-bis(phenyl)-C61-butyric acid methyl ester, [6,6]-thienyl-C61-butyric acid methyl ester, and [6,6]-phenyl-C71-butyric acid methyl ester ([70PCBM], in different aqueous matrixes. For this method fullerenes were extracted from the aqueous phase using solid-phase extraction (SPE), with subsequent analysis on a liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) system. SPE was optimized by varying different conditions to improve recovery of all fullerenes. Different SPE column materials (C18, C18e, C8, CN) were tested, and recoveries appeared to be the highest for the C18-material. Recoveries were improved by adding NaCl to the water during extraction. Very low limit of detection (LOD) values were obtained for all compounds with this method, ranging from 0.17 ng/L for [70]PCBM to 0.28 ng/L for C60, and subsequent limit of quantitation (LOQ) values of 0.57-0.91 ng/L. Recoveries for the fullerenes were on average 120% in ultrapure and drinking water. Recoveries appeared to be lower, but still acceptable (e.g., >78%), in surface water. The developed approach is promising and will be applied, for example, in (1) environmental monitoring, (2) a more in-depth study of environmental fate and transformation products, and (3) studying water treatment efficiency of C60, C70, and the various functionalized fullerenes.


Subject(s)
Fullerenes/analysis , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Water/analysis , Chromatography, Liquid/methods , Mass Spectrometry/methods
15.
Chemosphere ; 339: 139563, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482315

ABSTRACT

In this study the environmental fate of two novel trifluoromethoxy-substituted surfactants with respectively an ether or thioether linkage were investigated, of which the design aimed for less persistency and complete mineralization. Long-term microbial transformation studies under aerobic conditions in activated sludge-wastewater medium were performed for 126 days. A semi-closed experimental system with a trapping sorbent was selected to avoid losses of possible volatile transformation products (TPs). The changes in the concentration of the surfactants and their expected TPs were monitored by target analysis using liquid chromatography-tandem mass spectrometry. Significant decrease in the concentration of the surfactants was observed over the incubation period. The main detected TPs were short-chained carboxylic acids (CAs), including a CA with two fluorinated carbon atoms representing the last product prior to mineralization. High stability of these CAs and lack in the formation of inorganic fluoride over the incubation time was however observed. Consequently, unequivocal final mineralization of the investigated surfactants could not be confirmed. Regarding the mass balance, the total amount of detected substances achieved only 30-37% of the expected concentration at the end of the incubation time. The reason of the incomplete mass balance should be further investigated.


Subject(s)
Surface-Active Agents , Water Pollutants, Chemical , Biotransformation , Mass Spectrometry , Wastewater , Sewage/chemistry , Carboxylic Acids , Water Pollutants, Chemical/analysis
16.
Water Res ; 241: 120157, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37300966

ABSTRACT

Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of >100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity <100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.


Subject(s)
Sewage , Water Pollutants, Chemical , Humans , Sewage/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Wastewater , Pharmaceutical Preparations , Environmental Monitoring/methods
17.
Environ Sci Process Impacts ; 25(6): 1067-1081, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37199459

ABSTRACT

Measures are needed to protect water sources from substances that are mobile, persistent and toxic (PMT) or very persistent and very mobile (vPvM). PMT/vPvM substances are used in a diverse range of applications, including consumer products. The combined application of the essential-use and functional substitution concepts has been proposed to phase out substances of concern and support the transition to safer and more sustainable chemicals, a key goal of the European Commission's Chemicals Strategy for Sustainability. Here, we first identified the market share of PMT/vPvM containing cosmetic products. We found that 6.4% of cosmetic products available on the European market contain PMT or vPvM substances. PMT/vPvM substances were most often found in hair care products. Based on their high occurrence, the substances Allura red (CAS 25956-17-6), benzophenone-4 (CAS 4065-45-6) and climbazole (CAS 38083-17-9) were selected as case-studies for assessment of their functionality, availability of safer alternatives and essentiality. Following the functional substitution framework, we found that the technical function of Allura red was not necessary for the performance of some cosmetic products, making the use non-essential. For other applications of Allura red, as well as all applications of benzophenone-4 and climbazole, the technical function of the chemical was considered necessary for the performance. Via the alternative's assessment procedure, which used experimental and in silico data and three different multicriteria decision analysis (MCDA) strategies, safer alternatives were identified for all case-study chemicals. All assessed uses of PMT/vPvM substances were thus deemed non-essential and should consequently be phased out.


Subject(s)
Benzophenones , Cosmetics , Humans
18.
Sci Total Environ ; 890: 164420, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37236451

ABSTRACT

A wide range of PFAS residues were studied in an aquifer used for drinking water production which was affected by historical PFAS contamination from a landfill and military camp. Samples were taken at three monitoring and four pumping wells at different depths ranging from 33 to 147 m below the land surface and analysed for a series of 53 PFAS (C2-C14) and PFAS precursors (C4-C24). A comparison of results to earlier research from 2013, with a more limited range of PFAS, showed decreasing concentrations and migration of PFAS with increasing depth and distance from the contamination source. The PFAS profile and branched/linear isomer ratio are used as source characterization tools. The landfill was confirmed to contaminate the groundwater in both monitoring wells, while the military camp was indicated as a probable source for PFAS observed in the deep sampling points of one of the monitoring wells. Pumping wells used to produce drinking water are not yet affected by these two PFAS sources. In one of the four sampled pumping wells, a different PFAS profile and isomer pattern was observed, which indicated a different but yet unknown source. This work shows the necessity of implementing regular screening to identify potential (historical) PFAS sources to be able to prevent future contaminant migration nearby and towards drinking water abstraction wells.


Subject(s)
Drinking Water , Fluorocarbons , Groundwater , Water Pollutants, Chemical , Drinking Water/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Fluorocarbons/analysis
19.
Sci Total Environ ; 888: 163888, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37164106

ABSTRACT

Environmental risk assessment is generally based on atmospheric conditions for the modelling of chemical fate after entering the environment. However, during hydraulic fracturing, chemicals may be released deep underground. This study therefore focuses on the effects of high pressure and high temperature conditions on chemicals in flowback water to determine whether current environmental fate models need to be adapted in the context of downhole activities. Crushed shale and flowback water were mixed and exposed to different temperature (25-100 °C) and pressure (1-450 bar) conditions to investigate the effects they have on chemical fate. Samples were analysed using LC-HRMS based non-target screening. The results show that both high temperature and pressure conditions can impact the chemical fate of hydraulic fracturing related chemicals by increasing or decreasing concentrations via processes of transformation, sorption, degradation and/or dissolution. Furthermore, the degree and direction of change is chemical specific. The change is lower or equal to a factor of five, but for a few individual compounds the degree of change can exceed this factor of five. This suggests that environmental fate models based on surface conditions may be used for an approximation of chemical fate under downhole conditions by applying an additional factor of five to account for these uncertainties. More accurate insight into chemical fate under downhole conditions may be gained by studying a fluid of known chemical composition and an increased variability in temperature and pressure conditions including concentration, salinity and pH as variables.

20.
Environ Toxicol Chem ; 42(11): 2302-2316, 2023 11.
Article in English | MEDLINE | ID: mdl-37589402

ABSTRACT

Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Ecotoxicology , Fluorocarbons , Animals , Invertebrates , Risk Assessment , Research , Fluorocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL