Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 57(8): 1731-1733, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142274

ABSTRACT

Response to immune checkpoint blockade is increased in obesity-related cancers, but the mechanisms remain unclear. In a recent issue of Nature, Bader et al. report that obesity in mice induces macrophage PD-1 upregulation to promote tumor growth while potentiating immunotherapy responses.


Subject(s)
Macrophages , Neoplasms , Obesity , Obesity/immunology , Animals , Neoplasms/immunology , Neoplasms/etiology , Macrophages/immunology , Macrophages/metabolism , Humans , Mice , Programmed Cell Death 1 Receptor/metabolism , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Obesity Paradox
2.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220459

ABSTRACT

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Subject(s)
Glioma/metabolism , Glutamic Acid/biosynthesis , Transaminases/physiology , Cell Line, Tumor , Glioma/physiopathology , Glutamic Acid/drug effects , Glutarates/metabolism , Glutarates/pharmacology , Homeostasis/drug effects , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/physiology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/physiology , Mutation , Oxidation-Reduction/drug effects , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Transaminases/antagonists & inhibitors , Transaminases/genetics
3.
Cell ; 168(4): 657-669, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187287

ABSTRACT

Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress toward answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients.


Subject(s)
Metabolic Networks and Pathways , Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Proliferation , Cell Transformation, Neoplastic , Citric Acid Cycle , Humans , NADP/metabolism , Neoplasms/pathology , Nucleotides/biosynthesis
4.
Cell ; 171(3): 642-654.e12, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053970

ABSTRACT

The mTORC1 kinase is a master growth regulator that senses many environmental cues, including amino acids. Activation of mTORC1 by arginine requires SLC38A9, a poorly understood lysosomal membrane protein with homology to amino acid transporters. Here, we validate that SLC38A9 is an arginine sensor for the mTORC1 pathway, and we uncover an unexpectedly central role for SLC38A9 in amino acid homeostasis. SLC38A9 mediates the transport, in an arginine-regulated fashion, of many essential amino acids out of lysosomes, including leucine, which mTORC1 senses through the cytosolic Sestrin proteins. SLC38A9 is necessary for leucine generated via lysosomal proteolysis to exit lysosomes and activate mTORC1. Pancreatic cancer cells, which use macropinocytosed protein as a nutrient source, require SLC38A9 to form tumors. Thus, through SLC38A9, arginine serves as a lysosomal messenger that couples mTORC1 activation to the release from lysosomes of the essential amino acids needed to drive cell growth.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids, Essential/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Amino Acid Transport Systems/chemistry , Amino Acid Transport Systems/genetics , Animals , Arginine/metabolism , Cell Line , Cell Line, Tumor , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Sequence Alignment
5.
Mol Cell ; 84(11): 2036-2052.e7, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38688279

ABSTRACT

Alterations of bases in DNA constitute a major source of genomic instability. It is believed that base alterations trigger base excision repair (BER), generating DNA repair intermediates interfering with DNA replication. Here, we show that genomic uracil, a common type of base alteration, induces DNA replication stress (RS) without being processed by BER. In the absence of uracil DNA glycosylase (UNG), genomic uracil accumulates to high levels, DNA replication forks slow down, and PrimPol-mediated repriming is enhanced, generating single-stranded gaps in nascent DNA. ATR inhibition in UNG-deficient cells blocks the repair of uracil-induced gaps, increasing replication fork collapse and cell death. Notably, a subset of cancer cells upregulates UNG2 to suppress genomic uracil and limit RS, and these cancer cells are hypersensitive to co-treatment with ATR inhibitors and drugs increasing genomic uracil. These results reveal unprocessed genomic uracil as an unexpected source of RS and a targetable vulnerability of cancer cells.


Subject(s)
DNA Repair , DNA Replication , Genomic Instability , Uracil-DNA Glycosidase , Uracil , Humans , Uracil/metabolism , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/genetics , DNA Repair/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage , Cell Line, Tumor , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
6.
Cell ; 164(5): 884-95, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919427

ABSTRACT

Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Ischemic Preconditioning , Ketoglutaric Acids/metabolism , Animals , Ischemia/prevention & control , Kynurenic Acid/metabolism , Liver/metabolism , Mice , Models, Animal , Myocardial Reperfusion Injury/prevention & control , Parabiosis
7.
Cell ; 162(3): 552-63, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232225

ABSTRACT

Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.


Subject(s)
Aspartic Acid/biosynthesis , Cell Proliferation , Cell Respiration , Adenosine Triphosphate/metabolism , Butyrates/metabolism , Cell Line, Tumor , Electrons , Humans , Mitochondria/metabolism , Nucleotides/biosynthesis , Pyruvic Acid
8.
Nature ; 633(8031): 895-904, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39169180

ABSTRACT

For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.


Subject(s)
Carcinogenesis , Colon , Fasting , Feeding Behavior , Intestine, Small , Polyamines , Stem Cells , Animals , Female , Male , Mice , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Proliferation , Colon/cytology , Colon/metabolism , Colon/pathology , Diet , Fasting/physiology , Intestine, Small/cytology , Intestine, Small/metabolism , Intestine, Small/pathology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/pathology , Polyamines/metabolism , Protein Biosynthesis , Receptors, G-Protein-Coupled/metabolism , Regeneration/physiology , Risk Assessment , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/pathology , Time Factors , Feeding Behavior/physiology , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism
9.
Cell ; 158(6): 1309-1323, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215489

ABSTRACT

The balance between oxidative and nonoxidative glucose metabolism is essential for a number of pathophysiological processes. By deleting enzymes that affect aerobic glycolysis with different potencies, we examine how modulating glucose metabolism specifically affects hematopoietic and leukemic cell populations. We find that a deficiency in the M2 pyruvate kinase isoform (PKM2) reduces the levels of metabolic intermediates important for biosynthesis and impairs progenitor function without perturbing hematopoietic stem cells (HSCs), whereas lactate dehydrogenase A (LDHA) deletion significantly inhibits the function of both HSCs and progenitors during hematopoiesis. In contrast, leukemia initiation by transforming alleles putatively affecting either HSCs or progenitors is inhibited in the absence of either PKM2 or LDHA, indicating that the cell-state-specific responses to metabolic manipulation in hematopoiesis do not apply to the setting of leukemia. This finding suggests that fine-tuning the level of glycolysis may be explored therapeutically for treating leukemia while preserving HSC function.


Subject(s)
Glycolysis , Hematopoiesis , Leukemia/metabolism , Animals , Gene Deletion , Hematopoietic Stem Cells/metabolism , Humans , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Mice , Mice, Congenic , Mice, Inbred C57BL , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
10.
Nature ; 614(7947): 349-357, 2023 02.
Article in English | MEDLINE | ID: mdl-36725930

ABSTRACT

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Subject(s)
Adenosine Triphosphate , Breast Neoplasms , Citric Acid Cycle , Deceleration , Lung Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Citric Acid Cycle/physiology , Energy Metabolism , Glycolysis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Organ Specificity , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Biosynthesis
11.
Mol Cell ; 81(18): 3659-3664, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547228

ABSTRACT

To celebrate our Focus Issue, we asked a selection of researchers working on different aspects of metabolism what they are excited about and what is still to come. They discuss emerging concepts, unanswered questions, things to consider, and technologies that are enabling new discoveries, as well as developing and integrating approaches to drive the field forward.


Subject(s)
Metabolism/physiology , Research/trends , Humans , Research Personnel
12.
Mol Cell ; 81(4): 691-707.e6, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33382985

ABSTRACT

Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Glycolysis , NAD/metabolism , A549 Cells , Adenosine Triphosphate/genetics , Aerobiosis , Glucose/genetics , HeLa Cells , Humans , NAD/genetics , Oxidation-Reduction
13.
Immunity ; 50(5): 1129-1131, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31117009

ABSTRACT

Metabolic changes affect T lymphocyte function, and understanding this phenomenon could improve immunotherapy. In a recent paper in Science, Vodnala et al. (2019) report that tumor microenvironmental potassium impairs T cell nutrient uptake and thus causes functional caloric restriction and allows improved anti-tumor immune responses.


Subject(s)
Killer Cells, Natural , Neoplasms , Humans , Immunotherapy , T-Lymphocytes , Tumor Microenvironment
14.
CA Cancer J Clin ; 71(4): 333-358, 2021 07.
Article in English | MEDLINE | ID: mdl-33982817

ABSTRACT

Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.


Subject(s)
Metabolomics , Neoplasms/metabolism , Biomedical Research , Humans , Medical Oncology , Molecular Targeted Therapy , Neoplasms/therapy
15.
Cell ; 153(7): 1429-30, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23791173

ABSTRACT

Regulation of pyruvate fate is an important determinant of anabolic versus catabolic metabolism. A new report in the journal Nature by Kaplon et al. suggests that driving pyruvate oxidation can thwart tumor growth in BRAF-driven melanoma by inducing oncogene-induced senescence, a finding that might be exploited therapeutically.


Subject(s)
Cellular Senescence/genetics , Mitochondria/enzymology , Oncogenes/genetics , Pyruvate Dehydrogenase Complex/metabolism , Animals , Humans
16.
Cell ; 155(2): 397-409, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120138

ABSTRACT

The pyruvate kinase M2 isoform (PKM2) is expressed in cancer and plays a role in regulating anabolic metabolism. To determine whether PKM2 is required for tumor formation or growth, we generated mice with a conditional allele that abolishes PKM2 expression without disrupting PKM1 expression. PKM2 deletion accelerated mammary tumor formation in a Brca1-loss-driven model of breast cancer. PKM2 null tumors displayed heterogeneous PKM1 expression, with PKM1 found in nonproliferating tumor cells and no detectable pyruvate kinase expression in proliferating cells. This suggests that PKM2 is not necessary for tumor cell proliferation and implies that the inactive state of PKM2 is associated with the proliferating cell population within tumors, whereas nonproliferating tumor cells require active pyruvate kinase. Consistent with these findings, variable PKM2 expression and heterozygous PKM2 mutations are found in human tumors. These data suggest that regulation of PKM2 activity supports the different metabolic requirements of proliferating and nonproliferating tumor cells.


Subject(s)
Breast Neoplasms/metabolism , Gene Deletion , Mammary Neoplasms, Experimental/metabolism , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Animals , Base Sequence , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exons , Female , Gene Knockout Techniques , Heterografts , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Mutagenesis , Mutation , Neoplasm Metastasis , Neoplasm Transplantation , RNA Splicing
17.
Genes Dev ; 34(19-20): 1253-1255, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004484

ABSTRACT

Cancer cells must adapt metabolism to thrive despite nutrient limitations in the tumor microenvironment. In this issue of Genes & Development, King and colleagues (pp. 1345-1358) report a role for transcriptional regulators of the Hippo pathway to facilitate protein scavenging and support proliferation under some nutrient-deprived conditions.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Nutrients , Pinocytosis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transcriptional Activation
18.
Cell ; 149(1): 49-62, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22401813

ABSTRACT

Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.


Subject(s)
PTEN Phosphohydrolase/metabolism , Signal Transduction , Animals , Body Size , Cell Count , Cell Proliferation , Cell Respiration , Energy Metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism
19.
Nature ; 599(7884): 302-307, 2021 11.
Article in English | MEDLINE | ID: mdl-34671163

ABSTRACT

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth1-5. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels6-8, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours. Upregulation of stearoyl-CoA desaturase (SCD), which synthesises monounsaturated fatty acids, is required for cancer cells to proliferate in a lipid-depleted environment, and CR also impairs tumour SCD activity to cause an imbalance between unsaturated and saturated fatty acids to slow tumour growth. Enforcing cancer cell SCD expression or raising circulating lipid levels through a higher-fat CR diet confers resistance to the effects of CR. By contrast, although KD also impairs tumour SCD activity, KD-driven increases in lipid availability maintain the unsaturated to saturated fatty acid ratios in tumours, and changing the KD fat composition to increase tumour saturated fatty acid levels cooperates with decreased tumour SCD activity to slow tumour growth. These data suggest that diet-induced mismatches between tumour fatty acid desaturation activity and the availability of specific fatty acid species determine whether low glycaemic diets impair tumour growth.


Subject(s)
Blood Glucose/metabolism , Diet, Carbohydrate-Restricted , Fatty Acids/metabolism , Lipid Metabolism , Neoplasms/metabolism , Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Allografts , Animals , Caloric Restriction , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Diet, Ketogenic , Extracellular Fluid/chemistry , Fatty Acids, Unsaturated/metabolism , Female , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nutrients/analysis , Nutrients/blood , Stearoyl-CoA Desaturase/metabolism , Tumor Microenvironment/drug effects
20.
Nature ; 593(7858): 282-288, 2021 05.
Article in English | MEDLINE | ID: mdl-33828302

ABSTRACT

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Nutrients/metabolism , Tumor Microenvironment , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Glucose/metabolism , Glutamine/metabolism , Humans , Lipid Metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL