Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Glob Chang Biol ; 30(1): e17050, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273533

ABSTRACT

Tidal salt marshes produce and emit CH4 . Therefore, it is critical to understand the biogeochemical controls that regulate CH4 spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4 production, and higher salinity concentrations inhibit CH4 production in salt marshes. Recent evidence shows that CH4 is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil-atmosphere CH4 and CO2 fluxes coupled with depth profiles of soil CH4 and CO2 pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4 production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4 concentrations up to 145,000 µmol mol-1 positively correlated with S2- (salinity range: 6.6-14.5 ppt). Despite large CH4 production within the soil, soil-atmosphere CH4 fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m-2 s-1 ). CH4 and CO2 within the soil pore water were produced from young carbon, with most Δ14 C-CH4 and Δ14 C-CO2 values at or above modern. We found evidence that CH4 within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4 is produced, including diffusion into the atmosphere, CH4 oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4 production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co-occur and vary in importance over the year. This study highlights the potential for high CH4 production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4 budgets and blue carbon in salt marshes.


Las marismas salinas producen y emiten CH4 . Por lo tanto, es esencial comprender los controles biogeoquímicos que regulan la dinámica espacial y temporal del CH4 en estos humedales. El paradigma predominante asume que la metanogénesis acetoclástica es la vía dominante para la producción de CH4 y que altas concentraciones de salinidad inhiben la producción de CH4 en estos ecosistemas. Hay evidencia que el CH4 se produce las marismas salinas a través de la metanogénesis metilotrófica, un proceso no inhibido por la reducción del sulfato. Para explorar esta paradoja, realizamos mediciones de los flujos de CH4 y CO2 del suelo a la atmósfera junto con perfiles de concentraciones de CH4 y CO2 en el suelo, isótopos estables y radioisótopos, química del agua y composición de la comunidad microbiana para evaluar la producción y el destino del CH4 en una marisma salina templada. Encontramos concentraciones de CH4 sorprendentemente altas de hasta 145,000 µmol mol−1 correlacionadas positivamente con S2− (rango de salinidad: 6.6 a 14.5 ppt). A pesar de la gran producción de CH4 en el suelo, los flujos de CH4 del suelo a la atmósfera fueron bajos, pero con mayores emisiones y variabilidad extrema durante la época de senescencia de las plantas (84.3 ± 684.4 nmol m−2 s−1 ). El CH4 y el CO2 en el suelo se produjeron a partir de carbono joven, con la mayoría de los valores Δ14 C-CH4 y Δ14 C-CO2 en o por encima de valores modernos. Encontramos evidencia de que el CH4 en los suelos fue producido por metanogénesis metilotrófica e hidrogenotrófica. Existen varias vías que el CH4 producido sigue, incluida la difusión hacia la atmósfera, la oxidación del CH4 y la exportación lateral a arroyos adyacentes a la marisma; siendo este último el flujo dominante más probable. Nuestros hallazgos demuestran que la producción y los flujos de CH4 son biogeoquímicamente heterogéneos, con múltiples procesos y vías que pueden coexistir y variar en importancia a lo largo del año. Este estudio destaca el potencial de alta producción de CH4 , la necesidad de comprender los controles biogeoquímicos de la producción de CH4 y los retos que existen para evaluar las reservas de CH4 y el carbono azul en marismas salinas.


Subject(s)
Soil , Wetlands , Soil/chemistry , Methane , Carbon Dioxide/analysis , Carbon , Water
2.
Nature ; 560(7716): 80-83, 2018 08.
Article in English | MEDLINE | ID: mdl-30068952

ABSTRACT

Global soils store at least twice as much carbon as Earth's atmosphere1,2. The global soil-to-atmosphere (or total soil respiration, RS) carbon dioxide (CO2) flux is increasing3,4, but the degree to which climate change will stimulate carbon losses from soils as a result of heterotrophic respiration (RH) remains highly uncertain5-8. Here we use an updated global soil respiration database9 to show that the observed soil surface RH:RS ratio increased significantly, from 0.54 to 0.63, between 1990 and 2014 (P = 0.009). Three additional lines of evidence provide support for this finding. By analysing two separate global gross primary production datasets10,11, we find that the ratios of both RH and RS to gross primary production have increased over time. Similarly, significant increases in RH are observed against the longest available solar-induced chlorophyll fluorescence global dataset, as well as gross primary production computed by an ensemble of global land models. We also show that the ratio of night-time net ecosystem exchange to gross primary production is rising across the FLUXNET201512 dataset. All trends are robust to sampling variability in ecosystem type, disturbance, methodology, CO2 fertilization effects and mean climate. Taken together, our findings provide observational evidence that global RH is rising, probably in response to environmental changes, consistent with meta-analyses13-16 and long-term experiments17. This suggests that climate-driven losses of soil carbon are currently occurring across many ecosystems, with a detectable and sustained trend emerging at the global scale.


Subject(s)
Cell Respiration , Ecosystem , Heterotrophic Processes , Soil/chemistry , Atmosphere/chemistry , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Earth, Planet , Fluorescence , Linear Models , Meta-Analysis as Topic , Plants/metabolism , Soil Microbiology , Temperature
3.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612511

ABSTRACT

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Subject(s)
Anti-Infective Agents , Piscirickettsiaceae Infections , Salmo salar , Animals , Copper , Piscirickettsiaceae Infections/drug therapy , Piscirickettsiaceae Infections/veterinary , Anti-Bacterial Agents/pharmacology
4.
Glob Chang Biol ; 27(19): 4879-4893, 2021 10.
Article in English | MEDLINE | ID: mdl-34214242

ABSTRACT

The exchange of multiple greenhouse gases (i.e., CO2 and CH4 ) between tree stems and the atmosphere represents a knowledge gap in the global carbon cycle. Stem CO2 and CH4 fluxes vary across time and space and are unclear, which are their individual or shared drivers. Here we measured CO2 and CH4 fluxes at different stem heights combining manual (biweekly; n = 678) and automated (hourly; n > 38,000) measurements in a temperate upland forest. All trees showed CO2 and CH4 emissions despite 20% of measurements showing net CH4 uptake. Stem CO2 fluxes presented clear seasonal trends from manual and automated measurements. Only automated measurements captured the high temporal variability of stem CH4 fluxes revealing clear seasonal trends. Despite that temporal integration, the limited number of automated chambers made stand-level mean CH4 fluxes sensitive to "hot spots," resulting in mean fluxes with high uncertainty. Manual measurements provided better integration of spatial variability, but their lack of temporal variability integration hindered the detection of temporal trends and stand-level mean fluxes. These results highlight the potential bias of previous studies of stem CH4 fluxes solely based on manual or automated measurements. Stem height, temperature, and soil moisture only explained 7% and 11% of the stem CH4 flux variability compared to 42% and 81% for CO2 (manual and automated measurements, respectively). This large unexplained variability, in combination with high CH4 concentrations in the trees' heartwood, suggests that stem CH4 fluxes might be more influenced by gas transport and diffusivity through the wood than by drivers of respiratory CO2 flux, which has crucial implications for developing process-based ecosystem models. We postulate that CH4 is likely originated within tree stems because of lack of a consistent vertical pattern in CH4 fluxes, evidence of CH4 production in wood incubations, and low CH4 concentration in the soil profile but high concentrations within the trees' heartwood.


Subject(s)
Ecosystem , Trees , Carbon Dioxide , Forests , Methane , Nitrous Oxide , Soil
5.
Glob Chang Biol ; 27(16): 3923-3938, 2021 08.
Article in English | MEDLINE | ID: mdl-33934461

ABSTRACT

Soil respiration (Rs), the efflux of CO2 from soils to the atmosphere, is a major component of the terrestrial carbon cycle, but is poorly constrained from regional to global scales. The global soil respiration database (SRDB) is a compilation of in situ Rs observations from around the globe that has been consistently updated with new measurements over the past decade. It is unclear whether the addition of data to new versions has produced better-constrained global Rs estimates. We compared two versions of the SRDB (v3.0 n = 5173 and v5.0 n = 10,366) to determine how additional data influenced global Rs annual sum, spatial patterns and associated uncertainty (1 km spatial resolution) using a machine learning approach. A quantile regression forest model parameterized using SRDBv3 yielded a global Rs sum of 88.6 Pg C year-1 , and associated uncertainty of 29.9 (mean absolute error) and 57.9 (standard deviation) Pg C year-1 , whereas parameterization using SRDBv5 yielded 96.5 Pg C year-1 and associated uncertainty of 30.2 (mean average error) and 73.4 (standard deviation) Pg C year-1 . Empirically estimated global heterotrophic respiration (Rh) from v3 and v5 were 49.9-50.2 (mean 50.1) and 53.3-53.5 (mean 53.4) Pg C year-1 , respectively. SRDBv5's inclusion of new data from underrepresented regions (e.g., Asia, Africa, South America) resulted in overall higher model uncertainty. The largest differences between models parameterized with different SRDVB versions were in arid/semi-arid regions. The SRDBv5 is still biased toward northern latitudes and temperate zones, so we tested an optimized global distribution of Rs measurements, which resulted in a global sum of 96.4 ± 21.4 Pg C year-1 with an overall lower model uncertainty. These results support current global estimates of Rs but highlight spatial biases that influence model parameterization and interpretation and provide insights for design of environmental networks to improve global-scale Rs estimates.


Subject(s)
Respiration , Soil , Africa , Asia , Bias , Carbon/analysis , South America
6.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Article in English | MEDLINE | ID: mdl-33914985

ABSTRACT

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Subject(s)
Methane , Wetlands , Carbon Dioxide , Ecosystem , Fresh Water , Seasons
7.
Proc Natl Acad Sci U S A ; 115(7): 1424-1432, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29382745

ABSTRACT

Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.


Subject(s)
Ecology/education , Ecology/methods , Bayes Theorem , Climate Change , Ecology/trends , Ecosystem , Forecasting , Humans , Models, Theoretical
8.
J Environ Manage ; 280: 111752, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33358429

ABSTRACT

Turfgrass is an important component of the urban landscape frequently considered as an alternative land cover to offset anthropogenic CO2 emissions. However, quantitative information of the potential to directly remove CO2 from the atmosphere by turfgrass systems is lacking, especially in the tropics. Most assessments have considered the carbon accumulated by grass shoots and soil, but not the release of CO2 to the atmosphere by soil respiration (i.e., soil CO2 efflux). Here, we measured at high-temporal resolution (30-min) soil CO2 efflux, production, and storage rate for nearly three years in a residential lawn of Singapore. Furthermore, we quantified the carbon capture related to biomass production and CO2 emissions from fossil fuel consumption associated with maintenance activities (e.g., mowing equipment). Warm and humid conditions resulted in relatively constant rates of soil CO2 efflux, CO2 storage in soil, and aboveground biomass production (3370, 652, 1671 Mg CO2 km-2 yr-1; respectively), while the systematic use of mowing machinery emitted 27 Mg CO2 km-2 yr-1. Soil CO2 efflux and CO2 mowing emissions represent carbon losses to the atmosphere, while CO2 storage in soil and biomass productivity represent gains of carbon into the ecosystem. Under a steady state in which soil CO2 losses are only compensated by atmospheric CO2 uptake by photosynthesis, an ideal clipping waste disposal management, in which no CO2 molecule returns to the atmosphere (i.e., clippings are not burnt), and a 3-week mowing regime, this site can act as a sink of 2296 Mg CO2 km-2 yr-1. In the scenario of incinerating all clippings, the lawn acts as an emission source of 1046 Mg CO2 km-2 yr-1. Thus, management practices that reduce mowing frequency together with clipping disposal practices that minimize greenhouse gas emissions are needed to make urban lawns a potential natural solution to mitigate global environmental change.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon Dioxide/analysis , Cities , Singapore , Soil
9.
Oecologia ; 192(1): 13-27, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31773314

ABSTRACT

Autumn canopy phenological transitions are increasing in length as a consequence of climate change. Here, we assess how well hyperspectral indices in the visible and near-infrared (NIR) wavelengths predict nitrogen (N) concentrations in lower-canopy leaves in the autumn phenological transition as they are generally understudied in leaf trait research. Using a Bayesian framework, we tested how well published indices are able to predict N concentrations in Fagus grandifolia Ehrh., Liriodendron tulipifera L., and Betula lenta L. from mid-summer through senescence, and how related the indices are to autumn phenological change. No indices were able to determine a trend in differences in N in mid-summer leaves. Indices that included wavelengths in the green and NIR ranges were the first indices able to detect a trend and had among the highest correlations with N concentration in both the last green collection and the senescing collection. Models were unique when indices were fit to data from different phenophases. Indices that focused on only the red edge (i.e., the sharp increase in reflectance between the red and NIR wavelengths) had the strongest explanatory power across the autumn phenological transition, but had less explanatory power for individual collections. These indices, as well as those that have been correlated with chlorophyll (CCI) and carotenoids (PRI), were the strongest descriptors of autumn progression. This study provides insights on challenges and capabilities to monitor a leaf's N concentration throughout and across canopy senescence.


Subject(s)
Fagus , Bayes Theorem , Chlorophyll , Nitrogen , Plant Leaves , Seasons
10.
New Phytol ; 222(1): 18-28, 2019 04.
Article in English | MEDLINE | ID: mdl-30394559

ABSTRACT

Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4 ). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long-term, high-frequency measurements of stem CH4 emissions to understand the fine-scale processes, alongside rapid large-scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil-tree-atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process-based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.


Subject(s)
Carbon Cycle , Methane/metabolism , Plant Stems/metabolism , Trees/metabolism , Models, Biological , Water
11.
Glob Chang Biol ; 24(2): e705-e718, 2018 02.
Article in English | MEDLINE | ID: mdl-28981192

ABSTRACT

Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.


Subject(s)
Carbon Sequestration , Carbon/chemistry , Ecosystem , International Cooperation , Soil/chemistry , Agriculture , Carbon Cycle , Climate , Climate Change , Databases, Factual , Models, Theoretical
12.
Glob Chang Biol ; 23(10): 4204-4221, 2017 10.
Article in English | MEDLINE | ID: mdl-28295911

ABSTRACT

Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water-limited Southwest region of North America with observed ranges in annual precipitation of 100-1000 mm, annual temperatures of 2-25°C, and records of 3-10 years (150 site-years in total). Annual fluxes were integrated using site-specific ecohydrologic years to group precipitation with resulting ecosystem exchanges. We found a wide range of carbon sink/source function, with mean annual net ecosystem production (NEP) varying from -350 to +330 gCm-2 across sites with diverse vegetation types, contrasting with the more constant sink typically measured in mesic ecosystems. In this region, only forest-dominated sites were consistent carbon sinks. Interannual variability of NEP, gross ecosystem production (GEP), and ecosystem respiration (Reco ) was larger than for mesic regions, and half the sites switched between functioning as C sinks/C sources in wet/dry years. The sites demonstrated coherent responses of GEP and NEP to anomalies in annual evapotranspiration (ET), used here as a proxy for annually available water after hydrologic losses. Notably, GEP and Reco were negatively related to temperature, both interannually within site and spatially across sites, in contrast to positive temperature effects commonly reported for mesic ecosystems. Models based on MODIS satellite observations matched the cross-site spatial pattern in mean annual GEP but consistently underestimated mean annual ET by ~50%. Importantly, the MODIS-based models captured only 20-30% of interannual variation magnitude. These results suggest the contribution of this dryland region to variability of regional to global CO2 exchange may be up to 3-5 times larger than current estimates.


Subject(s)
Ecosystem , Forests , Carbon Dioxide , North America , Temperature
13.
Glob Chang Biol ; 22(5): 1867-79, 2016 May.
Article in English | MEDLINE | ID: mdl-26780862

ABSTRACT

Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.


Subject(s)
Carbon Cycle , Climate Change , Droughts , Carbon Dioxide/analysis , Desert Climate , Mexico , Photosynthesis , Seasons , Southwestern United States
14.
Water Sci Technol ; 73(12): 2944-52, 2016.
Article in English | MEDLINE | ID: mdl-27332840

ABSTRACT

The aim of this work was to investigate the kinetics of removal of clomazone herbicide from an aqueous solution by electrocoagulation. The experiments were performed in a cylindrical batch reactor with six aluminum electrodes in monopolar mode, arranged in series and connected to a digital DC power. The aqueous solution (tap water + clomazone) with initial pH close to 7.9 was always treated at ambient temperature (≈20 °C) and atmospheric pressure for 5,400 s. For a confidence level of 95% the rate constant of electrocoagulation and the efficiency of removal of clomazone at equilibrium were 2.1 × 10(-3) ± 0.5 × 10(-3) s(-1) and 97.7 ± 2.2%, respectively. The final chemical oxygen demand was 88% lower than that measured initially, while turbidity and apparent color were totally removed from the synthetic solution at a rate close to that of formation of aluminum hydroxides. Some reaction intermediates, such as benzonitrile-2-chloro and 2-chloro-hex-2,4-diene-1,6-dioic-acid determined by gas chromatography mass spectrometry (GC-MS) analysis, explain the ratio of equilibrium to initial total organic carbon approximately between 0.6 and 0.8 at a probability of 95%.


Subject(s)
Herbicides/chemistry , Isoxazoles/chemistry , Oxazolidinones/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aluminum/analysis , Electricity , Electrodes , Waste Disposal, Fluid/instrumentation
15.
Environ Monit Assess ; 188(8): 495, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27473109

ABSTRACT

Ulex europaeus (gorse) is an invasive shrub deemed as one of the most invasive species in the world. U. europaeus is widely distributed in the south-central area of Chile, which is considered a world hotspot for biodiversity conservation. In addition to its negative effects on the biodiversity of natural ecosystems, U. europaeus is one of the most severe pests for agriculture and forestry. Despite its importance as an invasive species, U. europaeus has been little studied. Although information exists on the potential distribution of the species, the interaction of the invasion process with the spatial dynamic of the landscape and the landscape-scale factors that control the presence or absence of the species is still lacking. We studied the spatial and temporal dynamics of the landscape and how these relate to U. europaeus invasion in south-central Chile. We used supervised classification of satellite images to determine the spatial distribution of the species and other land covers for the years 1986 and 2003, analysing the transitions between the different land covers. We used logistic regression for modelling the increase, decrease and permanence of U. europaeus invasion considering landscape variables. Results showed that the species covers only around 1 % of the study area and showed a 42 % reduction in area for the studied period. However, U. europaeus was the cover type which presented the greatest dynamism in the landscape. We found a strong relationship between changes in land cover and the invasion process, especially connected with forest plantations of exotic species, which promotes the displacement of U. europaeus. The model of gorse cover increase presented the best performance, and the most important predictors were distance to seed source and landscape complexity index. Our model predicted high spread potential of U. europaeus in areas of high conservation value. We conclude that proper management for this invasive species must take into account the spatial dynamics of the landscape within the invaded area in order to address containment, control or mitigation of the invasion.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Forestry , Introduced Species , Ulex/growth & development , Agriculture , Biodiversity , Chile , Ecosystem , Forests , Models, Theoretical
16.
New Phytol ; 207(1): 59-69, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25711344

ABSTRACT

Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine.


Subject(s)
Forests , Geography , Hydrology , Plant Leaves/physiology , Soil/chemistry , Tropical Climate , Water/physiology , Gases/metabolism , Mexico , Pinus/physiology , Plant Stomata/physiology , Quercus/physiology , Rain , Seasons , Species Specificity , Trees/physiology
17.
Sci Total Environ ; 912: 169391, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104838

ABSTRACT

Soil CO2 efflux represents a complex interplay of biological and physical processes that result in the production and transfer of CO2 from soils to the atmosphere. Temperature has been widely recognized as a critical factor regulating soil CO2 efflux and is commonly utilized in deterministic empirical models to predict this important flux for the carbon cycle. This study introduces the Bernstein copula-based cosimulation (BCC) as a data-driven probabilistic approach to model the temperature-soil CO2 efflux relationship. The BCC accounts for the joint probability distribution and temporal dependence of soil CO2 efflux, which are often overlooked in deterministic models. The BCC was implemented as a proof of concept using two years of data on soil CO2 efflux conditioned by soil temperature in a temperate forest. The BBC accurately reproduced the original probability distribution, temporal dependency, and temperature-soil CO2 efflux relationship. Our findings show that a deterministic method, such as the commonly employed exponential relationship between soil CO2 efflux and temperature, is limited for comprehensively capturing the intricate nature of the temperature-soil CO2 efflux relationship. This is due to the confounding and interacting effects of environmental drivers beyond temperature, which are not fully accounted for in such a deterministic approach. Furthermore, the BCC revealed that the probability density between the joint cumulative probability of temperature and soil CO2 efflux is not constant, which raises the concern that deterministic approaches introduce incorrect assumptions for estimating temperature-soil CO2 relationship. In conclusion, we propose that probabilistic approaches hold promise for effectively depicting dependency relationships for soil CO2 efflux modeling, and for improving predictions of the effects of weather variability and climate change.

18.
Front Chem ; 12: 1338614, 2024.
Article in English | MEDLINE | ID: mdl-38807978

ABSTRACT

[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.

19.
Microorganisms ; 12(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543677

ABSTRACT

Aquaculture is a growing industry worldwide, but it faces challenges related to animal health. These challenges include infections by parasites, bacteria, and viral pathogens. These harmful pathogens have devastating effects on the industry, despite efforts to control them through vaccination and antimicrobial treatments. Unfortunately, these measures have proven insufficient to address the sanitary problems, resulting in greater environmental impact due to the excessive use of antimicrobials. In recent years, probiotics have emerged as a promising solution to enhance the performance of the immune system against parasitic, bacterial, and viral pathogens in various species, including mammals, birds, and fish. Some probiotics have been genetically engineered to express and deliver immunomodulatory molecules. These promote selective therapeutic effects and specific immunization against specific pathogens. This review aims to summarize recent research on the use of probiotics in fish aquaculture, with a particular emphasis on genetically modified probiotics. In particular, we focus on the advantages of using these microorganisms and highlight the main barriers hindering their widespread application in the aquaculture industry.

20.
Front Pharmacol ; 15: 1373007, 2024.
Article in English | MEDLINE | ID: mdl-38756376

ABSTRACT

Introduction: Gastric cancer is one of the most prevalent types of cancer worldwide. The World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Global Cancer Statistics (GLOBOCAN) reported an age standardized global incidence rate of 9.2 per 100,000 individuals for gastric cancer in 2022, with a mortality rate of 6.1. Despite considerable progress in precision oncology through the efforts of international consortia, understanding the genomic features and their influence on the effectiveness of anti-cancer treatments across diverse ethnic groups remains essential. Methods: Our study aimed to address this need by conducting integrated in silico analyses to identify actionable genomic alterations in gastric cancer driver genes, assess their impact using deleteriousness scores, and determine allele frequencies across nine global populations: European Finnish, European non-Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish. Furthermore, our goal was to prioritize targeted therapeutic strategies based on pharmacogenomics clinical guidelines, in silico drug prescriptions, and clinical trial data. Results: Our comprehensive analysis examined 275,634 variants within 60 gastric cancer driver genes from 730,947 exome sequences and 76,215 whole-genome sequences from unrelated individuals, identifying 13,542 annotated and predicted oncogenic variants. We prioritized the most prevalent and deleterious oncogenic variants for subsequent pharmacogenomics testing. Additionally, we discovered actionable genomic alterations in the ARID1A, ATM, BCOR, ERBB2, ERBB3, CDKN2A, KIT, PIK3CA, PTEN, NTRK3, TP53, and CDKN2A genes that could enhance the efficacy of anti-cancer therapies, as suggested by in silico drug prescription analyses, reviews of current pharmacogenomics clinical guidelines, and evaluations of phase III and IV clinical trials targeting gastric cancer driver proteins. Discussion: These findings underline the urgency of consolidating efforts to devise effective prevention measures, invest in genomic profiling for underrepresented populations, and ensure the inclusion of ethnic minorities in future clinical trials and cancer research in developed countries.

SELECTION OF CITATIONS
SEARCH DETAIL