Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genet Med ; 23(5): 881-887, 2021 05.
Article in English | MEDLINE | ID: mdl-33473207

ABSTRACT

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Seizures/genetics , Exome Sequencing
2.
Lancet ; 393(10173): 747-757, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30712880

ABSTRACT

BACKGROUND: Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). METHODS: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. FINDINGS: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4-11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart disease and learning disability). Diagnostic genetic variants were present in 22 (15·4%) of 143 fetuses with multisystem anomalies (ie, more than one fetal structural anomaly), nine (11·1%) of 81 fetuses with cardiac anomalies, and ten (15·4%) of 65 fetuses with skeletal anomalies; these phenotypes were most commonly associated with diagnostic variants. However, diagnostic genetic variants were least common in fetuses with isolated increased nuchal translucency (≥4·0 mm) in the first trimester (in three [3·2%] of 93 fetuses). INTERPRETATION: WES facilitates genetic diagnosis of fetal structural anomalies, which enables more accurate predictions of fetal prognosis and risk of recurrence in future pregnancies. However, the overall detection of diagnostic genetic variants in a prospectively ascertained cohort with a broad range of fetal structural anomalies is lower than that suggested by previous smaller-scale studies of fewer phenotypes. WES improved the identification of genetic disorders in fetuses with structural abnormalities; however, before clinical implementation, careful consideration should be given to case selection to maximise clinical usefulness. FUNDING: UK Department of Health and Social Care and The Wellcome Trust.


Subject(s)
Abnormal Karyotype/statistics & numerical data , Congenital Abnormalities/genetics , Exome Sequencing/statistics & numerical data , Fetal Development/genetics , Fetus/abnormalities , Abnormal Karyotype/embryology , Abortion, Eugenic/statistics & numerical data , Abortion, Spontaneous/epidemiology , Congenital Abnormalities/diagnosis , Congenital Abnormalities/epidemiology , DNA Copy Number Variations/genetics , Female , Fetus/diagnostic imaging , Humans , Infant, Newborn , Live Birth/epidemiology , Male , Nuchal Translucency Measurement , Parents , Perinatal Death/etiology , Pregnancy , Prospective Studies , Stillbirth/epidemiology , Exome Sequencing/methods
3.
Genome Res ; 27(10): 1704-1714, 2017 10.
Article in English | MEDLINE | ID: mdl-28855261

ABSTRACT

Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements.


Subject(s)
Exome , Genome, Human , Mosaicism , Sequence Analysis, DNA/methods , Female , Humans , Male , Sequence Analysis, DNA/instrumentation
4.
Genet Med ; 22(1): 124-131, 2020 01.
Article in English | MEDLINE | ID: mdl-31316167

ABSTRACT

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Subject(s)
Arachnodactyly/diagnosis , Contracture/diagnosis , Fibrillin-2/genetics , Sequence Analysis, DNA/methods , Arachnodactyly/genetics , Child , Contracture/genetics , Diagnosis, Differential , Early Diagnosis , Female , Genetic Testing , Humans , Male , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Phenotype , Retrospective Studies , Sensitivity and Specificity
5.
Hum Mol Genet ; 24(10): 2733-45, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25634561

ABSTRACT

Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2-1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case-control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e - 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e - 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic-phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders.


Subject(s)
Developmental Disabilities/genetics , Genomic Structural Variation , Loss of Heterozygosity , Mosaicism , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Female , Genetic Testing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
6.
Am J Med Genet A ; 173(11): 3003-3012, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28944577

ABSTRACT

Exome sequencing in the context of developmental disorders is a useful technique, but variants found need to be interpreted in the context of detailed phenotypic information. Whole gene deletions and loss-of-function-mutations in the HNRNPU gene have been associated with intellectual disability and seizures in some patients. However, a unifying syndromic phenotype has not been previously elucidated. Here, we report a total of seven patients (six patients identified through the Wellcome Trust Deciphering Developmental Disorders study, with one additional patient), who have heterozygous de novo mutations in HNRNPU. These were found via trio-based exome sequencing. All but one of the mutations is predicted to cause loss-of-function. These patients have dysmorphic features in common, including prominent eyebrows, long palpebral fissures, overhanging columella, and thin upper lip. All patients have developmental delay and intellectual disability (ID), ranging from moderate to severe. Seizures are common from early childhood. These initially occur in the context of febrile episodes. This series demonstrates common phenotypic features, including emerging dysmorphism, associated with heterozygous HNRNPU mutations. This allows us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency.


Subject(s)
Developmental Disabilities/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Seizures/genetics , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/physiopathology , Exome , Female , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Heterozygote , Humans , Infant , Intellectual Disability/physiopathology , Male , Mutation , Neurodevelopmental Disorders/physiopathology , Phenotype , Seizures/physiopathology , Young Adult
7.
Am J Med Genet A ; 173(8): 2251-2256, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28544699

ABSTRACT

Lymphedema distichiasis syndrome (LDS) is a rare, autosomal dominant genetic condition, characterized by lower limb lymphedema and distichiasis. Other associated features that have been reported include varicose veins, cleft palate, congenital heart defects, and ptosis. We update a previously reported family with a pathogenic variant in FOXC2 (c.412-413insT) where five affected individuals from the youngest generation had congenital renal anomalies detected on prenatal ultrasound scan. These included four fetuses with hydronephrosis and one with bilateral renal agenesis. A further child with LDS had prominence of the left renal pelvis on postnatal renal ultrasound. We also describe a second family in whom the proband and his affected son had congenital renal anomalies; left ectopic kidney, right duplex kidney, and bilateral duplex collecting systems with partial duplex kidney with mild degree of malrotation, respectively. Foxc2 is expressed in the developing kidney and therefore congenital renal anomalies may well be associated, potentially as a low penetrance feature. We propose that all individuals diagnosed with LDS should have a baseline renal ultrasound scan at diagnosis. It would also be important to consider the possibility of renal anomalies during prenatal ultrasound of at risk pregnancies, and that the presence of hydronephrosis may be an indication that the baby is affected with LDS.


Subject(s)
Congenital Abnormalities/genetics , Eyelashes/abnormalities , Forkhead Transcription Factors/genetics , Kidney Diseases/congenital , Kidney/abnormalities , Lymphedema/genetics , Adult , Chromosomes, Human, Pair 16 , Congenital Abnormalities/diagnosis , Congenital Abnormalities/physiopathology , Eyelashes/physiopathology , Female , Frameshift Mutation , Humans , Infant , Infant, Newborn , Kidney/physiopathology , Kidney Diseases/complications , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Kidney Diseases/physiopathology , Lymphedema/complications , Lymphedema/diagnosis , Lymphedema/physiopathology , Male , Middle Aged , Pedigree
8.
Am J Med Genet A ; 170(3): 754-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26728615

ABSTRACT

Steinfeld syndrome (MIM #184705) was first reported in 1982. It is characterised by holoprosencephaly and limb defects, however other anomalies may also be present. Following the initial description, three further cases have been reported in the literature. We report on a 23-year-old girl, with features of microform holoprosencephaly and bilateral congenital elbow dislocation in association with hypoplastic radial heads. She was identified to have a variant in the CDON gene inherited from her father who had ocular hypotelorism, but no other clinical features. We discuss the clinical features of Steinfeld syndrome, and broaden the phenotypic spectrum of this condition. Structural analysis suggests that this variant could lead to destabilisation of binding of CDON with hedgehog proteins. Further work needs to be done to confirm whether mutations in the CDON gene are the cause of Steinfeld syndrome.


Subject(s)
Heart Defects, Congenital/diagnosis , Holoprosencephaly/diagnosis , Limb Deformities, Congenital/diagnosis , Phenotype , Amino Acid Sequence , Brain/pathology , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Comparative Genomic Hybridization , Facies , Female , Heart Defects, Congenital/genetics , Heterozygote , Holoprosencephaly/genetics , Humans , Limb Deformities, Congenital/genetics , Magnetic Resonance Imaging , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Protein Conformation , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Young Adult
9.
Am J Med Genet A ; 167A(10): 2231-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26079862

ABSTRACT

De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase-activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi-gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss-of-function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate-to-severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide-based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 Wiley Periodicals, Inc.


Subject(s)
Heterozygote , Intellectual Disability/genetics , Mutation , ras GTPase-Activating Proteins/genetics , Adolescent , Child , Child, Preschool , Constipation/diagnosis , Constipation/genetics , Constipation/pathology , DNA Mutational Analysis , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/pathology , Female , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/genetics , Gait Disorders, Neurologic/pathology , Gene Expression , Haploinsufficiency , Hip Dislocation/diagnosis , Hip Dislocation/genetics , Hip Dislocation/pathology , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Phenotype , Strabismus/diagnosis , Strabismus/genetics , Strabismus/pathology , Twins, Monozygotic
10.
Prenat Diagn ; 35(13): 1336-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26429400

ABSTRACT

OBJECTIVE: The objective of this study is to report the prenatal ultrasound scan findings in four fetuses from two families postnatally diagnosed with 17q12 microdeletion syndrome on microarray CGH and review the literature. METHODS: We report two families presenting with prenatally detected hyperechogenic kidneys. In family 1, the mother had three pregnancies complicated by anhydramnios with bilateral hyperechogenic kidneys, hyperechogenic enlarged cystic kidneys, and bilateral hyperechogenic kidneys with polyhydramnios respectively. In family 2, prenatal ultrasound scans detected hyperechogenic kidneys. A pubmed search for all reported cases of 17q12 deletion between 2005 and 2015 was performed. All publications were reviewed, and findings summarised. RESULTS: Fourteen publications were deemed suitable for literature review; there was a diagnosis of 17q12 deletion with documented prenatal findings in 25 cases. Prenatal renal anomalies were reported in 88% of these cases. Anomalies were documented from 15 weeks, and most common presentation was hyperechogenic, muticystic, or enlarged kidneys. Both oligohydramnios and polyhydramnios were seen. Postnatal renal ultrasound scan findings were of muticystic or multicystic dysplastic kidney. There did not appear to be correlation of prenatal presentation and severity of renal disease. CONCLUSION: Prenatal testing should be offered to all cases of hyperechogenic kidneys, with unknown cause.


Subject(s)
Abnormalities, Multiple/diagnostic imaging , Intellectual Disability/diagnostic imaging , Kidney/diagnostic imaging , Adult , Chromosome Deletion , Chromosomes, Human, Pair 17/diagnostic imaging , Female , Humans , Infant , Male , Ultrasonography, Prenatal
11.
Hum Mutat ; 31(10): 1142-54, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20672375

ABSTRACT

A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral-facial-digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype-phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria.


Subject(s)
Abnormalities, Multiple/genetics , Kruppel-Like Transcription Factors/genetics , Mutation , Nerve Tissue Proteins/genetics , Pallister-Hall Syndrome/pathology , Polydactyly/pathology , Syndactyly/pathology , Craniofacial Abnormalities/genetics , Genotype , Humans , Mouth Abnormalities/genetics , Pallister-Hall Syndrome/genetics , Phenotype , Polydactyly/genetics , Syndactyly/genetics , Zinc Finger Protein Gli3
12.
Epilepsy Res ; 140: 166-170, 2018 02.
Article in English | MEDLINE | ID: mdl-29367179

ABSTRACT

Bainbridge-Ropers syndrome is a genetic syndrome caused by heterozygous loss-of-function pathogenic variants in ASXL3, which encodes a protein involved in transcriptional regulation. Affected individuals have multiple abnormalities including developmental impairment, hypotonia and characteristic facial features. Seizures are reported in approximately a third of cases; however, the epileptology has not been thoroughly studied. We identified three patients with pathogenic ASXL3 variants and seizures at Austin Health and in the DECIPHER database. These three patients had novel de novo ASXL3 pathogenic variants, two with truncation variants and one with a splice site variant. All three had childhood-onset generalized epilepsy with generalized tonic-clonic seizures, with one also having atypical absence seizures. We also reviewed available clinical data on five published patients with Bainbridge-Ropers syndrome and seizures. Of the five previously published patients, three also had generalized tonic-clonic seizures, one of whom also had possible absence seizures; a fourth patient had absence seizures and possible focal seizures. EEG typically showed features consistent with generalized epilepsy including generalized spike-wave, photoparoxysmal response, and occipital intermittent rhythmic epileptiform activity. Bainbridge-Ropers syndrome is associated with childhood-onset generalized epilepsy with generalized tonic-clonic seizures and/or atypical absence seizures.


Subject(s)
Developmental Disabilities/complications , Epilepsy, Generalized/complications , Transcription Factors/genetics , Adolescent , Child , Developmental Disabilities/genetics , Epilepsy, Generalized/genetics , Genetic Variation , Humans , Male , Phenotype , Seizures/complications , Seizures/genetics , Syndrome
13.
Science ; 362(6419): 1161-1164, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30409806

ABSTRACT

We estimated the genome-wide contribution of recessive coding variation in 6040 families from the Deciphering Developmental Disorders study. The proportion of cases attributable to recessive coding variants was 3.6% in patients of European ancestry, compared with 50% explained by de novo coding mutations. It was higher (31%) in patients with Pakistani ancestry, owing to elevated autozygosity. Half of this recessive burden is attributable to known genes. We identified two genes not previously associated with recessive developmental disorders, KDM5B and EIF3F, and functionally validated them with mouse and cellular models. Our results suggest that recessive coding variants account for a small fraction of currently undiagnosed nonconsanguineous individuals, and that the role of noncoding variants, incomplete penetrance, and polygenic mechanisms need further exploration.


Subject(s)
Developmental Disabilities/genetics , Genes, Recessive , Genetic Code , Genetic Variation , Penetrance , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-3/genetics , Europe , Genome-Wide Association Study , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Nuclear Proteins/genetics , Pakistan , Phylogeny , Repressor Proteins/genetics
14.
Clin Dysmorphol ; 16(2): 127-129, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17351360

ABSTRACT

Prader-Willi syndrome is a complex multisystem disorder characterized by neonatal hypotonia, developmental delay, short stature, obesity, behaviour problems, hypothalamic hypogonadism and characteristic appearance. A number of sex chromosome abnormalities have been reported in children with Prader-Willi syndrome. We report on an infant with a 47, XXY karyotype and Prader-Willi syndrome diagnosed at 2 months of age. He is possibly the youngest to be reported with both Prader-Willi syndrome and Klinefelter syndrome. We have shown that the extra X chromosome causing Klinefelter syndrome is paternal in origin and Prader-Willi syndrome is due to maternal heterodisomy indicating that these two events occurred coincidentally.


Subject(s)
Klinefelter Syndrome/complications , Prader-Willi Syndrome/complications , Aneuploidy , Humans , Infant , Klinefelter Syndrome/genetics , Male , Prader-Willi Syndrome/genetics , Sex Chromosomes/genetics
15.
Eur J Hum Genet ; 14(7): 884-7, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16639408

ABSTRACT

Craniofrontonasal syndrome (CFNS, MIM 304110) is an X-linked craniofacial disorder that shows paradoxically greater severity in heterozygous females than in hemizygous males. Mutations have been identified in the EFNB1 gene that encodes a member of the ephrin-B family of transmembrane ligands for Eph receptor tyrosine kinases. Here, we describe two unrelated families, in both of which a mother and her son have proven mutations in EFNB1. The mothers have classical features of CFNS; although the sons have no major craniofacial features other than telecanthus, both had a congenital diaphragmatic hernia (CDH). Our cases represent the first in which CDH has been confirmed in males with mutations in EFNB1, highlighting an important role for signalling by ephrin-B1 in the development of the diaphragm.


Subject(s)
Craniofacial Abnormalities/genetics , Ephrin-B1/genetics , Hernia, Diaphragmatic/genetics , Abnormalities, Multiple/genetics , Child, Preschool , Female , Genetic Diseases, X-Linked/genetics , Hernias, Diaphragmatic, Congenital , Humans , Infant, Newborn , Male , Phenotype , Syndrome
16.
Clin Dysmorphol ; 14(3): 109-116, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15930898

ABSTRACT

Microcephaly-lymphoedema-chorioretinal dysplasia (MIM 152950) has been described as a distinct clinical entity. The mode of inheritance is uncertain, but male to male transmission has been observed supporting autosomal dominant inheritance. A characteristic facial phenotype has recently been suggested. We report three isolated male patients with this condition who have all of the major features and share a distinct facial appearance with upslanting palpebral fissures, a broad nose with rounded tip, anteverted nares, long philtrum with thin upper lip, pointed chin and prominent ears. The clinical features in our patients support the hypothesis of a characteristic facial phenotype in this syndrome.


Subject(s)
Abnormalities, Multiple/pathology , Lymphedema/pathology , Microcephaly/pathology , Retinal Dysplasia/pathology , Abnormalities, Multiple/genetics , Child , Child, Preschool , Face/abnormalities , Genes, Dominant/genetics , Humans , Infant, Newborn , Male , Syndrome
17.
Clin Dysmorphol ; 13(3): 179-182, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15194956

ABSTRACT

We report on a child with Fryns syndrome who showed a characteristic coarse hirsute facial appearance, bilateral cleft lip and palate, cardiac and renal anomalies, dilated bowel and distal limb abnormalities. However, diaphragmatic hernia, which is considered a cardinal feature in this condition, was absent in our patient. The parents were consanguineous supporting autosomal recessive inheritance.


Subject(s)
Abnormalities, Multiple/diagnosis , Cleft Lip/diagnosis , Cleft Palate/diagnosis , Abnormalities, Multiple/genetics , Cleft Lip/complications , Cleft Palate/complications , Consanguinity , Facies , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis , Hernia, Diaphragmatic/complications , Hernia, Diaphragmatic/diagnosis , Hirsutism/complications , Hirsutism/diagnosis , Humans , Infant, Newborn , Karyotyping , Kidney/abnormalities , Limb Deformities, Congenital/complications , Limb Deformities, Congenital/diagnosis , Male , Syndrome
18.
Eur J Hum Genet ; 22(7): 881-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24281367

ABSTRACT

Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide. This is a review of the condition based on the clinical features of 37 individuals from 22 families. This report includes nine previously unreported families and additional information for some of those reported previously. The condition arose de novo in 8/20 families (40%). The parental results were not available for two probands. The mutations were varied and include missense, nonsense, frameshift, and splice site and are distributed evenly throughout the KIF11 gene. In our cohort, 86% had microcephaly, 78% had an ocular abnormality consistent with the diagnosis, 46% had lymphoedema, 73% had mild-moderate learning difficulties, 8% had epilepsy, and 8% had a cardiac anomaly. We identified three individuals with KIF11 mutations but no clinical features of MCLMR demonstrating reduced penetrance. The variable expression of the phenotype and the presence of mildly affected individuals indicates that the prevalence may be higher than expected, and we would therefore recommend a low threshold for genetic testing.


Subject(s)
Intellectual Disability/genetics , Kinesins/genetics , Lymphedema/genetics , Microcephaly/genetics , Mutation , Penetrance , Phenotype , Retinal Diseases/genetics , Cohort Studies , Family , Female , Humans , Male
19.
Clin Med (Lond) ; 18(2): 192, 2018 03.
Article in English | MEDLINE | ID: mdl-29626039
SELECTION OF CITATIONS
SEARCH DETAIL