Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Affiliation country
Publication year range
1.
Nat Immunol ; 22(2): 154-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33398185

ABSTRACT

Inflammatory caspase sensing of cytosolic lipopolysaccharide (LPS) triggers pyroptosis and the concurrent release of damage-associated molecular patterns (DAMPs). Collectively, DAMPs are key determinants that shape the aftermath of inflammatory cell death. However, the identity and function of the individual DAMPs released are poorly defined. Our proteomics study revealed that cytosolic LPS sensing triggered the release of galectin-1, a ß-galactoside-binding lectin. Galectin-1 release is a common feature of inflammatory cell death, including necroptosis. In vivo studies using galectin-1-deficient mice, recombinant galectin-1 and galectin-1-neutralizing antibody showed that galectin-1 promotes inflammation and plays a detrimental role in LPS-induced lethality. Mechanistically, galectin-1 inhibition of CD45 (Ptprc) underlies its unfavorable role in endotoxin shock. Finally, we found increased galectin-1 in sera from human patients with sepsis. Overall, we uncovered galectin-1 as a bona fide DAMP released as a consequence of cytosolic LPS sensing, identifying a new outcome of inflammatory cell death.


Subject(s)
Alarmins/metabolism , Endotoxemia/immunology , Galectin 1/metabolism , Inflammation Mediators/metabolism , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Phosphate-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alarmins/deficiency , Alarmins/genetics , Animals , Case-Control Studies , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/metabolism , Endotoxemia/pathology , Female , Galectin 1/blood , Galectin 1/deficiency , Galectin 1/genetics , HeLa Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Leukocyte Common Antigens/metabolism , Lipopolysaccharides , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Necroptosis , Phosphate-Binding Proteins/deficiency , Phosphate-Binding Proteins/genetics , RAW 264.7 Cells , Sepsis/blood , Sepsis/diagnosis , Signal Transduction , Up-Regulation
2.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170814

ABSTRACT

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Francisella/physiology , Gram-Negative Bacterial Infections/immunology , Inflammasomes/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , DNA Damage , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Interferon Type I/metabolism , Interleukin-1/metabolism , Interleukin-18/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Phosphate-Binding Proteins , Potassium/metabolism , RNA, Small Interfering/genetics
3.
Proc Natl Acad Sci U S A ; 121(5): e2306816121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38266047

ABSTRACT

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.


Subject(s)
Multiple Sclerosis , Peptide Fragments , Tissue Inhibitor of Metalloproteinase-1 , Animals , Mice , Rats , Astrocytes , Fibronectins/genetics , Fingolimod Hydrochloride/pharmacology , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Proteomics , Tissue Inhibitor of Metalloproteinase-1/genetics
4.
Proc Natl Acad Sci U S A ; 119(30): e2122227119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858420

ABSTRACT

NF-κB-mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.


Subject(s)
Atherosclerosis , Polypyrimidine Tract-Binding Protein , Alternative Splicing , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Endothelium/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
5.
J Immunol ; 209(8): 1574-1585, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36165184

ABSTRACT

Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting ß2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced ß2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and ß2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.


Subject(s)
CD18 Antigens , Neutrophils , Animals , CD18 Antigens/metabolism , Calcium/metabolism , Cell Adhesion , Guanosine , Guanosine Triphosphate/metabolism , Humans , Interleukin-8/metabolism , Mice , Mice, Inbred C57BL , Neutrophils/metabolism , Polyphosphates , rac1 GTP-Binding Protein/metabolism
6.
Circulation ; 145(3): 206-218, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34913723

ABSTRACT

BACKGROUND: Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS: A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS: Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS: Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.


Subject(s)
Atherosclerosis/therapy , Cardiovascular Diseases/therapy , Foam Cells/cytology , Macrophages/cytology , Aged , Aged, 80 and over , Atherosclerosis/etiology , Atherosclerosis/genetics , Cardiovascular Diseases/complications , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , Female , Humans , Male , Middle Aged , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/therapy , ROC Curve , Risk , Vascular Calcification/complications , Vascular Calcification/genetics , Vascular Calcification/therapy
7.
Immunol Invest ; 52(2): 135-153, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394561

ABSTRACT

BACKGROUND: Interleukin-17 (IL-17) family cytokines play critical roles in inflammation and pathogen resistance. Inflammation in the central nervous system, denoted as neuroinflammation, promotes the onset and progression of Alzheimer's disease (AD). Previous studies showed that IL-17A neutralizing antibody treatment alleviated Amyloid ß (Aß) burden in rodent models of AD, while overexpression of IL-17A in mouse lateral ventricles rescued part of the AD pathology. However, the involvement of IL-17 in AD and its mechanism of action remain largely unknown. METHODS: To investigate the role of IL-17 in AD, we crossed mice lacking the common receptor of IL-17 signaling (IL-17RA knockout mice) to the APP/PS1 mouse model of AD. We then analyzed the composition of immune cells and cytokines/chemokines during different phases of AD pathology, and interrogated the underlying mechanism by which IL-17 may regulate immune cell infiltration into AD brains. RESULTS: Ablation of IL-17RA in APP/PS1 mice decreased infiltration of CD8+ T cells and myeloid cells to mouse brain. IL-17 was able to promote the production of myeloid- and T cell-attracting chemokines CXCL1 and CXCL9/10 in primary glial cells. We also observed that IL-17 is upregulated in the late stage of AD development, and ectopic expression of IL-17 via adenoviral infection to the cortex trended towards worsened cognition in APP/PS1 mice, suggesting a pathogenic role of excessive IL-17 in AD. CONCLUSION: Our data show that IL-17 signaling promotes neuroinflammation in AD by accelerating the infiltration of CD8+ T lymphocytes and Gr1+ CD11b+ myeloid cells.


Subject(s)
Alzheimer Disease , Mice , Animals , Amyloid beta-Peptides/metabolism , Interleukin-17/metabolism , Neuroinflammatory Diseases , Mice, Transgenic , Brain/pathology , Disease Models, Animal , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Mice, Knockout
8.
J Immunol ; 206(11): 2682-2691, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34021047

ABSTRACT

Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs-induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-ß-induced degradation of both TYK2 and type I IFNR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.


Subject(s)
Adaptor Proteins, Vesicular Transport/immunology , Autophagy-Related Proteins/immunology , Janus Kinases/immunology , STAT1 Transcription Factor/immunology , STAT2 Transcription Factor/immunology , Animals , Cells, Cultured , Chlorocebus aethiops , Humans , Signal Transduction/immunology
9.
Proc Natl Acad Sci U S A ; 117(46): 28655-28666, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33144508

ABSTRACT

The gold standard treatment for anterior cruciate ligament (ACL) reconstruction is the use of tendon autografts and allografts. Limiting factors for this treatment include donor site morbidity, potential disease transmission, and variable graft quality. To address these limitations, we previously developed an off-the-shelf alternative, a poly(l-lactic) acid (PLLA) bioengineered ACL matrix, and demonstrated its feasibility to regenerate ACL tissue. This study aims to 1) accelerate the rate of regeneration using the bioengineered ACL matrix by supplementation with bone marrow aspirate concentrate (BMAC) and growth factors (BMP-2, FGF-2, and FGF-8) and 2) increase matrix strength retention. Histological evaluation showed robust tissue regeneration in all groups. The presence of cuboidal cells reminiscent of ACL fibroblasts and chondrocytes surrounded by an extracellular matrix rich in anionic macromolecules was up-regulated in the BMAC group. This was not observed in previous studies and is indicative of enhanced regeneration. Additionally, intraarticular treatment with FGF-2 and FGF-8 was found to suppress joint inflammation. To increase matrix strength retention, we incorporated nondegradable fibers, polyethylene terephthalate (PET), into the PLLA bioengineered ACL matrix to fabricate a "tiger graft." The tiger graft demonstrated the greatest peak loads among the experimental groups and the highest to date in a rabbit model. Moreover, the tiger graft showed superior osteointegration, making it an ideal bioengineered ACL matrix. The results of this study illustrate the beneficial effect bioactive factors and PET incorporation have on ACL regeneration and signal a promising step toward the clinical translation of a functional bioengineered ACL matrix.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Guided Tissue Regeneration , Intercellular Signaling Peptides and Proteins/therapeutic use , Regeneration/drug effects , Stem Cell Transplantation/methods , Tissue Scaffolds , Animals , Bioengineering , Intercellular Signaling Peptides and Proteins/pharmacology , Osseointegration , Polyesters , Polyethylene Terephthalates , Rabbits
10.
Trends Immunol ; 40(6): 492-510, 2019 06.
Article in English | MEDLINE | ID: mdl-31053495

ABSTRACT

Long noncoding RNAs (lncRNAs) are key molecules that regulate gene expression in a variety of organisms. LncRNAs can drive different transcriptional and post-transcriptional events that impact cellular functions. Recent studies have identified many lncRNAs associated with immune cell development and activation; however, an understanding of their functional role in host immunity to infection is just emerging. Here, we provide a detailed and updated review of the functional roles of lncRNAs in regulating mammalian immune responses during host-pathogen interactions, because these functions may be either beneficial or detrimental to the host. With increased mechanistic insight into the roles of lncRNAs, it may be possible to design and/or improve lncRNA-based therapies to treat a variety of infectious and inflammatory diseases.


Subject(s)
Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunomodulation/genetics , RNA, Long Noncoding/genetics , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Genome , Genome-Wide Association Study/methods , Genomics/methods , Humans
11.
Proc Natl Acad Sci U S A ; 116(21): 10488-10493, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31068461

ABSTRACT

Extracellular vesicles (EVs) are emerging as potent mediators of intercellular communication with roles in inflammation and disease. In this study, we examined the role of EVs from blood plasma (pEVs) in an experimental autoimmune encephalomyelitis mouse model of central nervous system demyelination. We determined that pEVs induced a spontaneous relapsing-remitting disease phenotype in MOG35-55-immunized C57BL/6 mice. This modified disease phenotype was found to be driven by CD8+ T cells and required fibrinogen in pEVs. Analysis of pEVs from relapsing-remitting multiple sclerosis patients also identified fibrinogen as a significant portion of pEV cargo. Together, these data suggest that fibrinogen in pEVs contributes to the perpetuation of neuroinflammation and relapses in disease.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Extracellular Vesicles/metabolism , Fibrinogen/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Recurrence
12.
J Infect Dis ; 223(12): 2186-2196, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33161431

ABSTRACT

The stimulator of interferon gene (STING) pathway controls both DNA and RNA virus infection. STING is essential for induction of innate immune responses during DNA virus infection, while its mechanism against RNA virus remains largely elusive. We show that STING signaling is crucial for restricting chikungunya virus infection and arthritis pathogenesis. Sting-deficient mice (Stinggt/gt) had elevated viremia throughout the viremic stage and viral burden in feet transiently, with a normal type I IFN response. Stinggt/gt mice presented much greater foot swelling, joint damage, and immune cell infiltration than wild-type mice. Intriguingly, expression of interferon-γ and Cxcl10 was continuously upregulated by approximately 7 to 10-fold and further elevated in Stinggt/gt mice synchronously with arthritis progression. However, expression of chemoattractants for and activators of neutrophils, Cxcl5, Cxcl7, and Cxcr2 was suppressed in Stinggt/gt joints. These results demonstrate that STING deficiency leads to an aberrant chemokine response that promotes pathogenesis of CHIKV arthritis.


Subject(s)
Arthritis , Chikungunya Fever , Membrane Proteins/immunology , Animals , Arthritis/immunology , Arthritis/virology , Chikungunya Fever/immunology , Chikungunya virus , Immunity, Innate , Mice , Mice, Knockout , Viremia
13.
J Immunol ; 200(4): 1513-1526, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29305435

ABSTRACT

Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , T-Box Domain Proteins/biosynthesis , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Cell Differentiation/immunology , Core Binding Factor Alpha 3 Subunit/immunology , Immunotherapy , Lymphocyte Activation/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Transgenic , Receptors, OX40/agonists , Receptors, OX40/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
14.
Am J Physiol Heart Circ Physiol ; 316(6): H1354-H1365, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30925075

ABSTRACT

Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.


Subject(s)
Arteries/immunology , Atherosclerosis/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , Lymphocyte Activation , Plaque, Atherosclerotic , Adaptive Immunity , Animals , Arteries/metabolism , Arteries/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD8-Positive T-Lymphocytes/metabolism , Cellular Microenvironment , Humans , Inflammation/metabolism , Inflammation/pathology , Signal Transduction
15.
Am J Physiol Heart Circ Physiol ; 316(6): H1480-H1494, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30978132

ABSTRACT

Effector CD8 T cells infiltrate atherosclerotic lesions and are correlated with cardiovascular events, but the mechanisms regulating their recruitment and retention are not well understood. CD137 (4-1BB) is a costimulatory receptor induced on immune cells and expressed at sites of human atherosclerotic plaque. Genetic variants associated with decreased CD137 expression correlate with carotid-intimal thickness and its deficiency in animal models attenuates atherosclerosis. These effects have been attributed in part to endothelial responses to low and disturbed flow (LDF), but CD137 also generates robust effector CD8 T cells as a costimulatory signal. Thus, we asked whether CD8 T cell-specific CD137 stimulation contributes to their infiltration, retention, and IFNγ production in early atherogenesis. We tested this through adoptive transfer of CD8 T cells into recipient C57BL/6J mice that were then antigen primed and CD137 costimulated. We analyzed atherogenic LDF vessels in normolipidemic and PCSK9-mediated hyperlipidemic models and utilized a digestion protocol that allowed for lesional T-cell characterization via flow cytometry and in vitro stimulation. We found that CD137 activation, specifically of effector CD8 T cells, triggers their intimal infiltration into LDF vessels and promotes a persistent innate-like proinflammatory program. Residence of CD137+ effector CD8 T cells further promoted infiltration of endogenous CD8 T cells with IFNγ-producing potential, whereas CD137-deficient CD8 T cells exhibited impaired vessel infiltration, minimal IFNγ production, and reduced infiltration of endogenous CD8 T cells. Our studies thus provide novel insight into how CD137 costimulation of effector T cells, independent of plaque-antigen recognition, instigates their retention and promotes innate-like responses from immune infiltrates within atherogenic foci. NEW & NOTEWORTHY Our studies identify CD137 costimulation as a stimulus for effector CD8 T-cell infiltration and persistence within atherogenic foci, regardless of atherosclerotic-antigen recognition. These costimulated effector cells, which are generated in pathological states such as viral infection and autoimmunity, have innate-like proinflammatory programs in circulation and within the atherosclerotic microenvironment, providing mechanistic context for clinical correlations of cardiovascular morbidity with increased CD8 T-cell infiltration and markers of activation in the absence of established antigen specificity.


Subject(s)
Aorta, Abdominal/metabolism , Atherosclerosis/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carotid Arteries/metabolism , Immunity, Innate , Lymphocyte Activation , Plaque, Atherosclerotic , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Adoptive Transfer , Animals , Aorta, Abdominal/immunology , Aorta, Abdominal/pathology , Atherosclerosis/immunology , Atherosclerosis/pathology , CD8-Positive T-Lymphocytes/immunology , Carotid Arteries/immunology , Carotid Arteries/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Gene Transfer Techniques , Hyperlipidemias/complications , Interferon-gamma/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 9/deficiency , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
16.
Opt Express ; 27(25): 36799-36814, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873452

ABSTRACT

Star test polarimetry is an imaging polarimetry technique in which an element with spatially-varying birefringence is placed in the pupil plane to encode polarization information into the point-spread function (PSF) of an imaging system. In this work, a variational calculation is performed to find the optimal birefringence distribution that effectively encodes polarization information while producing the smallest possible PSF, thus maximizing the resolution for imaging polarimetry. This optimal solution is found to be nearly equivalent to the birefringence distribution that results from a glass window being subjected to three uniformly spaced stress points at its edges, which has been used in previous star test polarimetry setups.

17.
Phys Rev Lett ; 122(12): 123603, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30978064

ABSTRACT

A mathematical extension of the weak value formalism to the simultaneous measurement of multiple parameters is presented in the context of an optical focused vector beam scatterometry experiment. In this example, preselection and postselection are achieved via spatially varying polarization control, which can be tailored to optimize the sensitivity to parameter variations. Initial experiments for the two-parameter case demonstrate that this method can be used to measure physical parameters with resolutions at least 1000 times smaller than the wavelength of illumination.

18.
Cancer Immunol Immunother ; 67(4): 605-613, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29327109

ABSTRACT

Combination immunotherapies utilizing complementary modalities that target distinct tumor attributes or immunosuppressive mechanisms, or engage different arms of the antitumor immune response, can elicit greater therapeutic efficacy than the component monotherapies. Increasing the number of agents included in a therapeutic cocktail can further increase efficacy, however, this approach poses numerous challenges for clinical translation. Here, a novel platform to simplify combination immunotherapy by covalently linking immunotherapeutic agonists to the costimulatory receptors CD134 and CD137 into a single heterodimeric drug, "OrthomAb", is shown. This reagent not only retains costimulatory T cell activity, but also elicits unique T cell functions that are not programmed by either individual agonist, and preferentially expands effector T cells over Tregs. Finally, in an aggressive melanoma model OrthomAb elicits better therapeutic efficacy compared to the unlinked agonists. This demonstration that two drugs can be combined into one provides a framework for distilling complex combination drug cocktails into simpler delivery platforms.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Melanoma, Experimental/drug therapy , Receptors, OX40/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Cell Differentiation , Female , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Receptors, OX40/antagonists & inhibitors , Tumor Cells, Cultured , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
19.
Opt Lett ; 43(3): 379-382, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400864

ABSTRACT

The Poincaré sphere is a graphical representation in a three-dimensional space for the polarization of light. Similarly, an optical element with spatially varying birefringence can be represented by a surface on a four-dimensional "Poincaré hypersphere." A projection of this surface onto the traditional Poincaré sphere provides an intuitive geometric description of the polarization transformation performed by the element, as well as the induced geometric phase. We apply this formalism to quantify the effects of birefringence on the image quality of an optical system.

20.
J Immunol ; 196(11): 4510-21, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183621

ABSTRACT

Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and noninducible pathways as potential targets. It was found that TNF caused neutrophil entry into the peripheral blood, whereas CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and nonoverlapping roles for the noninducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.


Subject(s)
CD28 Antigens/immunology , Enterotoxins/administration & dosage , Enterotoxins/immunology , Immunity, Innate/immunology , Signal Transduction/immunology , Tumor Necrosis Factors/immunology , Animals , Inhalation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Neutrophils/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL