Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Publication year range
1.
Bioessays ; 45(9): e2300070, 2023 09.
Article in English | MEDLINE | ID: mdl-37318314

ABSTRACT

Increasing complexity and specialisation of modern sciences has led to increasingly collaborative publications, as well as the involvement of commercial services. Modern integrative taxonomy likewise depends on many lines of evidence and is increasingly complex, but the trend of collaboration lags and various attempts at 'turbo taxonomy' have been unsatisfactory. We are developing a taxonomic service in the Senckenberg Ocean Species Alliance to provide fundamental data for new species descriptions. This will also function as a hub to connect a global network of taxonomists, assembling an alliance of scientists working on potential new species to tackle both the extinction and inclusion crises we face today. The current rate of new species descriptions is simply too slow; the discipline is often dismissed as old fashioned, and there is a crisis level need for taxonomic descriptions to come to grips with the scale of Anthropocene biodiversity loss. Here, we envision how the process of describing and naming species would benefit from a service supporting the acquisition of descriptive data. Also see the video abstract here: https://youtu.be/E8q3KJor_F8.


Subject(s)
Biodiversity
2.
Mol Phylogenet Evol ; 193: 108012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224796

ABSTRACT

The evolution of several orthopteran groups, especially within the grasshopper family Acrididae, remains poorly understood. This is particularly true for the subfamily Gomphocerinae, which comprises cryptic sympatric and syntopic species. Previous mitochondrial studies have highlighted major discrepancies between taxonomic and phylogenetic hypotheses, thereby emphasizing the necessity of genome-wide approaches. In this study, we employ double-digest restriction site-associated DNA sequencing (ddRADseq) to reconstruct the evolution of Central European Chorthippus and Pseudochorthippus species, especially C.smardai, P.tatrae and the C.biguttulus group. Our phylogenomic analyses recovered deep discordance with mitochondrial DNA barcoding, emphasizing its unreliability in Gomphocerinae grasshoppers. Specifically, our data robustly distinguished the C.biguttulus group and confirmed the distinctiveness of C.eisentrauti, also shedding light on its presence in the Berchtesgaden Alps. Moreover, our results support the reclassification of C.smardai to the genus Pseudochorthippus and of P.tatrae to the genus Chorthippus. Our study demonstrates the efficiency of high-throughput genomic methods such as RADseq without prior optimization to elucidate the complex evolution of grasshopper radiations with direct taxonomic implications. While RADseq has predominantly been utilized for population genomics and within-genus phylogenomics, its application extends to resolve relationships between deeply-diverged clades representative of distinct genera.


Subject(s)
Grasshoppers , Animals , Grasshoppers/genetics , Phylogeny , Chromosomes , DNA, Mitochondrial/genetics , Sequence Analysis, DNA
3.
Syst Biol ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37956405

ABSTRACT

Scientific names permit humans and search engines to access knowledge about the biodiversity that surrounds us, and names linked to DNA sequences are playing an ever-greater role in search-and-match identification procedures. Here, we analyze how users and curators of the National Center for Biotechnology Information (NCBI) are flagging and curating sequences derived from nomenclatural type material, which is the only way to improve the quality of DNA-based identification in the long run. For prokaryotes, 18,281 genome assemblies from type strains have been curated by NCBI staff and improve the quality of prokaryote naming. For Fungi, type-derived sequences representing over 21,000 species are now essential for fungus naming and identification. For the remaining eukaryotes, however, the numbers of sequences identifiable as type-derived are minuscule, representing only 1,000 species of arthropods, 8,441 vertebrates, and 430 embryophytes. An increase in the production and curation of such sequences will come from (i) sequencing of types or topotypic specimens in museum collections, (ii) the March 2023 rule changes at the International Nucleotide Sequence Database Collaboration requiring more metadata for specimens, and (iii) efforts by data submitters to facilitate curation, including informing NCBI curators about a specimen's type status. We illustrate different type-data submission journeys and provide best-practice examples from a range of organisms. Expanding the number of type-derived sequences in DNA databases, especially of eukaryotes, is crucial for capturing, documenting, and protecting biodiversity.

4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34465621

ABSTRACT

The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.


Subject(s)
Anura/genetics , Genetic Loci , Genetic Speciation , Animals , Genome , Reproductive Isolation
5.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35417559

ABSTRACT

Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3 Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases.


Subject(s)
Gene Transfer, Horizontal , Parasites , Animals , Cattle , Geography , Parasites/genetics , Phylogeny , Predatory Behavior , Retroelements , Vertebrates/genetics
6.
J Anim Ecol ; 91(6): 1163-1179, 2022 06.
Article in English | MEDLINE | ID: mdl-34695234

ABSTRACT

Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.


Subject(s)
Genomics , Lizards , Acclimatization/genetics , Adaptation, Physiological/genetics , Animals , Climate Change , Lizards/genetics , Selection, Genetic
7.
BMC Neurol ; 22(1): 427, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376863

ABSTRACT

BACKGROUND: Vaccination is an important public health strategy; however, many neurological adverse effects are associated with COVID-19 vaccination, being encephalitis a rare manifestation. CASE PRESENTATION: We present the case of a 33-year-old woman who received the first dose of the BBIBP-CorV vaccine against COVID-19 on April 4 and the second dose on April 28, 2021. Three days after receiving the second dose, she experienced a subacute episode of headache, fever, insomnia, and transient episodes of environment disconnection. We obtained negative results for infectious, systemic, and oncological causes. Brain magnetic resonance imaging showed lesions in the bilateral caudate nucleus and nonspecific demyelinating lesions at the supratentorial and infratentorial compartments. The results of the neuronal autoantibodies panel were negative. She had an adequate response to immunoglobulin and methylprednisolone; however, she experienced an early clinical relapse and received a new cycle of immunosuppressive treatment followed by a satisfactory clinical evolution. CONCLUSIONS: We report the first case of severe encephalitis associated with BBIBP-CorV (Sinopharm) vaccination in Latin America. The patient had atypical imaging patterns, with early clinical relapse and a favorable response to corticosteroid therapy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Encephalitis , Adult , Female , Humans , COVID-19 Vaccines/adverse effects , Encephalitis/drug therapy , Encephalitis/etiology , Encephalitis/pathology , Recurrence , Vaccination
8.
Article in English | MEDLINE | ID: mdl-35398256

ABSTRACT

Global changes in temperature, predator introductions, and pollution might challenge animals by altering food conditions. A fast-growing source of environmental pollution are microplastics. If ingested with the natural food source, microplastics act as artificial fibers that reduce food quality by decreasing nutrient and energy density with possible ramifications for growth and development. Animals might cope with altered food conditions with digestive plasticity. We examined experimentally whether larvae of the African clawed frog (Xenopus laevis) exhibit digestive morphology plasticity (i.e., gut length, mass, and diameter) in response to microplastics ingestion. As natural systems contain non-digestible particles similar in size and shape to microplastics, we included cellulose as a natural fiber control group. Gut length and mass increased in response to microplastics and cellulose ingestion indicating that both types of fibers induced digestive plasticity. Body mass and body condition were similar across experimental groups, indicating that larvae fully compensated for low nutrient and energy density by developing longer intestines. The ability of a species to respond plastically to environmental variation, as X. laevis responded, indicates that this species might have the potential to cope with new conditions during global change, although it is uncertain whether this potential may be reduced in a multi-stressor environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Cellulose , Eating , Environmental Monitoring , Larva , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Xenopus laevis
9.
Zoo Biol ; 41(3): 244-262, 2022 May.
Article in English | MEDLINE | ID: mdl-34870879

ABSTRACT

Madagascar's biota is characterized by an extraordinary species richness, with a high degree of endemism. The island's freshwater habitats harbor numerous micro-endemic species, restricted to particular regions and thus particularly at risk of extinction, due to deforestation, overfishing, and introduction of exotic species. The present study investigates for which threatened Malagasy freshwater fish species ex situ populations have already been established, as a baseline to prioritize actions to develop an effective ex situ conservation breeding network. Populations in zoos and aquaria were primarily determined using the Zoological Information System. Of 173 fish species recorded from Malagasy freshwater habitats, 123 exclusively inhabit freshwater; 79 of these are endemic to Madagascar, and 50 are classified as threatened. Our survey found 21 Malagasy freshwater fish species kept in zoos worldwide, of which 19 are endemic and threatened (22 if counting species kept by private breeders). Nine of the 19 Malagasy freshwater fish species kept in zoos have successfully reproduced within the 12 months preceding our survey. The ex situ conservation activities for threatened Malagasy freshwater fishes thus have not improved significantly since the strong start in the early 2000s. More than half of the 50 threatened endemic Malagasy freshwater fish species (viz. 31 species) are not kept ex situ, including 11 species ranked as Critically Endangered. Based on these findings we call for a better distribution of offspring among institutions, including private breeders in the framework of citizen conservation initiatives; a closer connection of ichthyological field research in Madagascar with conservation breeding efforts to set up ex situ populations-both in Madagascar and abroad-of species not yet kept in captivity; and the development of effective, integrated in situ and ex situ conservation strategies.


Subject(s)
Animals, Zoo , Conservation of Natural Resources , Animals , Endangered Species , Fisheries , Fishes , Fresh Water
10.
Mol Phylogenet Evol ; 157: 107063, 2021 04.
Article in English | MEDLINE | ID: mdl-33387650

ABSTRACT

The salamander genus Salamandra is widespread across Europe, North Africa, and the Near East and is renowned for its conspicuous and polymorphic colouration and diversity of reproductive modes. The phylogenetic relationships within the genus, and especially in the highly polymorphic species S. salamandra, have been very challenging to elucidate, leaving its real evolutionary history and classification at species and subspecies levels a topic of debate and contention. However, the distribution of diversity and species delimitation within the genus are critically important for identifying evolutionarily significant units for conservation and management, especially in light of threats posed by the pathogenic chytrid fungus Batrachochytrium salamandrivorans that is causing massive declines of S. salamandra populations in central Europe. Here, we conducted a phylogenomic analysis from across the taxonomic and geographic breadth of the genus Salamandra in its entire range. Bayesian, maximum likelihood and network-based phylogenetic analyses of up to 4905 ddRADseq-loci (294,300 nucleotides of sequence) supported the distinctiveness of all currently recognised species (Salamandra algira, S. atra, S. corsica, S. infraimmaculata, S. lanzai, and S. salamandra), and all five species for which we have multiple exemplars were confirmed as monophyletic. Within S. salamandra, two main clades can be distinguished: one clade with the Apenninic subspecies S. s. gigliolii nested within the Iberian S. s. bernardezi/fastuosa; and a second clade comprising all other Iberian, Central and East European subspecies. Our analyses revealed that some of the currently recognized subspecies of S. salamandra are paraphyletic and may require taxonomic revision, with the Central- and Eastern-European subspecies all being poorly differentiated at the analysed genomic markers. Salamandra s. longirostris - sometimes considered a separate species - was nested within S. salamandra, consistent with its subspecies status. The relationships identified within and between Salamandra species provide valuable context for future systematic and biogeographic studies, and help elucidate critical evolutionary units for conservation and taxonomy.


Subject(s)
Phylogeny , Urodela/classification , Urodela/genetics , Animals , Bayes Theorem , Biodiversity , Genotype , Geography , Principal Component Analysis , Species Specificity
11.
Mol Phylogenet Evol ; 165: 107311, 2021 12.
Article in English | MEDLINE | ID: mdl-34530117

ABSTRACT

The 71 currently known species of dwarf geckos of the genus Lygodactylus are a clade of biogeographic interest due to their occurrence in continental Africa, Madagascar, and South America. Furthermore, because many species are morphologically cryptic, our knowledge of species-level diversity within this genus is incomplete, as indicated by numerous unnamed genetic lineages revealed in previous molecular studies. Here we provide an extensive multigene phylogeny covering 56 of the named Lygodactylus species, four named subspecies, and 34 candidate species of which 19 are newly identified in this study. Phylogenetic analyses, based on ∼10.1 kbp concatenated sequences of eight nuclear-encoded and five mitochondrial gene fragments, confirm the monophyly of 14 Lygodactylus species groups, arranged in four major clades. We recover two clades splitting from basal nodes, one comprising exclusively Malagasy species groups, and the other containing three clades. In the latter, there is a clade with only Madagascar species, which is followed by a clade containing three African and one South American species groups, and its sister clade containing six African and two Malagasy species groups. Relationships among species groups within these latter clades remain weakly supported. We reconstruct a Lygodactylus timetree based on a novel fossil-dated phylotranscriptomic tree of squamates, in which we included data from two newly sequenced Lygodactylus transcriptomes. We estimate the crown diversification of Lygodactylus started at 46 mya, and the dispersal of Lygodactylus among the main landmasses in the Oligocene and Miocene, 35-22 mya, but emphasize the wide confidence intervals of these estimates. The phylogeny suggests an initial out-of-Madagascar dispersal as most parsimonious, but accounting for poorly resolved nodes, an out-of-Africa scenario may only require one extra dispersal step. More accurate inferences into the biogeographic history of these geckos will likely require broader sampling of related genera and phylogenomic approaches to provide better topological support. A survey of morphological characters revealed that most of the major clades and species groups within Lygodactylus cannot be unambiguously characterized by external morphology alone, neither by unique character states nor by a diagnostic combination of character states. Thus, any future taxonomic work will likely benefit from integrative, phylogenomic approaches.


Subject(s)
Lizards , Phylogeny , Africa , Animals , Bayes Theorem , Fossils , Genes, Mitochondrial , Lizards/anatomy & histology , Lizards/genetics , Madagascar , South America
12.
Mol Phylogenet Evol ; 155: 106967, 2021 02.
Article in English | MEDLINE | ID: mdl-33031928

ABSTRACT

Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.


Subject(s)
Hybridization, Genetic , Phylogeny , Urodela/classification , Urodela/genetics , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Mitochondria/genetics , Transcriptome/genetics
13.
Syst Biol ; 69(6): 1231-1253, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32298457

ABSTRACT

Natural history collections are leading successful large-scale projects of specimen digitization (images, metadata, DNA barcodes), thereby transforming taxonomy into a big data science. Yet, little effort has been directed towards safeguarding and subsequently mobilizing the considerable amount of original data generated during the process of naming 15,000-20,000 species every year. From the perspective of alpha-taxonomists, we provide a review of the properties and diversity of taxonomic data, assess their volume and use, and establish criteria for optimizing data repositories. We surveyed 4113 alpha-taxonomic studies in representative journals for 2002, 2010, and 2018, and found an increasing yet comparatively limited use of molecular data in species diagnosis and description. In 2018, of the 2661 papers published in specialized taxonomic journals, molecular data were widely used in mycology (94%), regularly in vertebrates (53%), but rarely in botany (15%) and entomology (10%). Images play an important role in taxonomic research on all taxa, with photographs used in >80% and drawings in 58% of the surveyed papers. The use of omics (high-throughput) approaches or 3D documentation is still rare. Improved archiving strategies for metabarcoding consensus reads, genome and transcriptome assemblies, and chemical and metabolomic data could help to mobilize the wealth of high-throughput data for alpha-taxonomy. Because long-term-ideally perpetual-data storage is of particular importance for taxonomy, energy footprint reduction via less storage-demanding formats is a priority if their information content suffices for the purpose of taxonomic studies. Whereas taxonomic assignments are quasifacts for most biological disciplines, they remain hypotheses pertaining to evolutionary relatedness of individuals for alpha-taxonomy. For this reason, an improved reuse of taxonomic data, including machine-learning-based species identification and delimitation pipelines, requires a cyberspecimen approach-linking data via unique specimen identifiers, and thereby making them findable, accessible, interoperable, and reusable for taxonomic research. This poses both qualitative challenges to adapt the existing infrastructure of data centers to a specimen-centered concept and quantitative challenges to host and connect an estimated $ \le $2 million images produced per year by alpha-taxonomic studies, plus many millions of images from digitization campaigns. Of the 30,000-40,000 taxonomists globally, many are thought to be nonprofessionals, and capturing the data for online storage and reuse therefore requires low-complexity submission workflows and cost-free repository use. Expert taxonomists are the main stakeholders able to identify and formalize the needs of the discipline; their expertise is needed to implement the envisioned virtual collections of cyberspecimens. [Big data; cyberspecimen; new species; omics; repositories; specimen identifier; taxonomy; taxonomic data.].


Subject(s)
Classification , Databases, Factual/standards , Animals , Databases, Factual/trends
14.
Naturwissenschaften ; 108(1): 7, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33528676

ABSTRACT

Gut microorganisms are crucial for many biological functions playing a pivotal role in the host's well-being. We studied gut bacterial community structure of marine iguana populations across the Galápagos archipelago. Marine iguanas depend heavily on their specialized gut microbiome for the digestion of dietary algae, a resource whose growth was strongly reduced by severe "El Niño"-related climatic fluctuations in 2015/2016. As a consequence, marine iguana populations showed signs of starvation as expressed by a poor body condition. Body condition indices (BCI) varied between island populations indicating that food resources (i.e., algae) are affected differently across the archipelago during 'El Niño' events. Though this event impacted food availability for marine iguanas, we found that reductions in body condition due to "El Niño"-related starvation did not result in differences in bacterial gut community structure. Species richness of gut microorganisms was instead correlated with levels of neutral genetic diversity in the distinct host populations. Our data suggest that marine iguana populations with a higher level of gene diversity and allelic richness may harbor a more diverse gut microbiome than those populations with lower genetic diversity. Since low values of these diversity parameters usually correlate with small census and effective population sizes, we use our results to propose a novel hypothesis according to which small and genetically less diverse host populations might be characterized by less diverse microbiomes. Whether such genetically depauperate populations may experience additional threats from reduced dietary flexibility due to a limited intestinal microbiome is currently unclear and calls for further investigation.


Subject(s)
El Nino-Southern Oscillation , Gastrointestinal Microbiome/physiology , Iguanas/microbiology , Animals , Biodiversity , Ecuador
15.
Naturwissenschaften ; 108(4): 29, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34181110

ABSTRACT

Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.


Subject(s)
Chlorophyta , Eukaryota , Animals , Chlorophyta/genetics , DNA Barcoding, Taxonomic , Phylogeny , Ranidae
16.
J Stroke Cerebrovasc Dis ; 30(9): 105985, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34284323

ABSTRACT

OBJECTIVES: COVID-19 pandemic has forced important changes in health care worldwide. Stroke care networks have been affected, especially during peak periods. We assessed the impact of the pandemic and lockdowns in stroke admissions and care in Latin America. MATERIALS AND METHODS: A multinational study (7 countries, 18 centers) of patients admitted during the pandemic outbreak (March-June 2020). Comparisons were made with the same period in 2019. Numbers of cases, stroke etiology and severity, acute care and hospitalization outcomes were assessed. RESULTS: Most countries reported mild decreases in stroke admissions compared to the same period of 2019 (1187 vs. 1166, p = 0.03). Among stroke subtypes, there was a reduction in ischemic strokes (IS) admissions (78.3% vs. 73.9%, p = 0.01) compared with 2019, especially in IS with NIHSS 0-5 (50.1% vs. 44.9%, p = 0.03). A substantial increase in the proportion of stroke admissions beyond 48 h from symptoms onset was observed (13.8% vs. 20.5%, p < 0.001). Nevertheless, no differences in total reperfusion treatment rates were observed, with similar door-to-needle, door-to-CT, and door-to-groin times in both periods. Other stroke outcomes, as all-type mortality during hospitalization (4.9% vs. 9.7%, p < 0.001), length of stay (IQR 1-5 days vs. 0-9 days, p < 0.001), and likelihood to be discharged home (91.6% vs. 83.0%, p < 0.001), were compromised during COVID-19 lockdown period. CONCLUSIONS: In this Latin America survey, there was a mild decrease in admissions of IS during the COVID-19 lockdown period, with a significant delay in time to consultations and worse hospitalization outcomes.


Subject(s)
COVID-19/prevention & control , Endovascular Procedures/trends , Hospitalization/trends , Practice Patterns, Physicians'/trends , Stroke/therapy , Time-to-Treatment/trends , COVID-19/transmission , Cause of Death/trends , Endovascular Procedures/adverse effects , Endovascular Procedures/mortality , Female , Health Care Surveys , Hospital Mortality/trends , Humans , Latin America , Length of Stay/trends , Male , Patient Admission/trends , Patient Discharge/trends , Stroke/diagnosis , Stroke/mortality , Time Factors , Treatment Outcome
17.
Mol Ecol ; 29(5): 986-1000, 2020 03.
Article in English | MEDLINE | ID: mdl-32012388

ABSTRACT

Subdivided Pleistocene glacial refugia, best known as "refugia within refugia", provided opportunities for diverging populations to evolve into incipient species and/or to hybridize and merge following range shifts tracking the climatic fluctuations, potentially promoting extensive cytonuclear discordances and "ghost" mtDNA lineages. Here, we tested which of these opposing evolutionary outcomes prevails in northern Iberian areas hosting multiple historical refugia of common frogs (Rana cf. temporaria), based on a genomic phylogeography approach (mtDNA barcoding and RAD-sequencing). We found evidence for both incipient speciation events and massive cytonuclear discordances. On the one hand, populations from northwestern Spain (Galicia and Asturias, assigned to the regional endemic R. parvipalmata), are deeply-diverged at mitochondrial and nuclear genomes (~4 My of independent evolution), and barely admix with northeastern populations (assigned to R. temporaria sensu stricto) across a narrow hybrid zone (~25 km) located in the Cantabrian Mountains, suggesting that they represent distinct species. On the other hand, the most divergent mtDNA clade, widespread in Cantabria and the Basque country, shares its nuclear genome with other R. temporaria s. s. lineages. Patterns of population expansions and isolation-by-distance among these populations are consistent with past mitochondrial capture and/or drift in generating and maintaining this ghost mitochondrial lineage. This remarkable case study emphasizes the complex evolutionary history that shaped the present genetic diversity of refugial populations, and stresses the need to revisit their phylogeography by genomic approaches, in order to make informed taxonomic inferences.


Subject(s)
Genetic Speciation , Genetics, Population , Phylogeography , Rana temporaria/genetics , Refugium , Animals , Cell Nucleus/genetics , DNA Barcoding, Taxonomic , DNA, Mitochondrial/genetics , Ice Cover , Polymorphism, Single Nucleotide , Spain
18.
Mol Phylogenet Evol ; 150: 106850, 2020 09.
Article in English | MEDLINE | ID: mdl-32438044

ABSTRACT

Gene duplication and horizontal gene transfer (HGT) are two important but different forces for adaptive genome evolution. In eukaryotic organisms, gene duplication is considered to play a more important evolutionary role than HGT. However, certain fungal lineages have developed highly efficient mechanisms that avoid the occurrence of duplicated gene sequences within their genomes. While these mechanisms likely originated as a defense against harmful mobile genetic elements, they come with an evolutionary cost. A prominent example for a genome defense system is the RIP mechanism of the ascomycete fungus Neurospora crassa, which efficiently prevents sequence duplication within the genome and functional redundancy of the subsequent paralogs. Despite this tight control, the fungus possesses two functionally redundant sterol C-5 desaturase enzymes, ERG-10a and ERG-10b, that catalyze the same step during ergosterol biosynthesis. In this study, we addressed this conundrum by phylogenetic analysis of the two proteins and supporting topology tests. We obtained evidence that a primary HGT of a sterol C-5 desaturase gene from Tremellales (an order of Basidiomycota) into a representative of the Pezizomycotina (a subphylum of Ascomycota) is the origin of the ERG-10b sequence. The reconstructed phylogenies suggest that this HGT event was followed by multiple HGT events among other members of the Pezizomycotina, thereby generating a diverse group with members in the four classes Sordariomycetes, Xylonomycetes, Eurotiomycetes and Dothideomycetes, which all harbor the second sterol C-5 desaturase or maintained in some cases only the ERG-10b version of this enzyme. These results furnish an example for a gene present in numerous ascomycetous fungi but primarily acquired by an ancestral HGT event from another fungal phylum. Furthermore, these data indicate that HGT represents one mechanism to generate functional redundancy in organisms with a strict avoidance of gene duplications.


Subject(s)
Ascomycota/genetics , Basidiomycota/genetics , Gene Transfer, Horizontal/genetics , Oxidoreductases/genetics , Ascomycota/enzymology , Basidiomycota/enzymology , Databases, Genetic , Evolution, Molecular , Oxidoreductases/classification , Phylogeny , RNA, Ribosomal, 18S/classification , RNA, Ribosomal, 18S/genetics
19.
Mol Phylogenet Evol ; 144: 106700, 2020 03.
Article in English | MEDLINE | ID: mdl-31809850

ABSTRACT

Madagascar's biota is characterized by a high degree of microendemism at different taxonomic levels, but how colonization and in-situ speciation contribute to the assembly of local species communities has rarely been studied on this island. Here we analyze the phylogenetic relationships of riparian frogs of the Mantidactylus ambreensis species complex, which is distributed in the north of Madagascar and was originally described from Montagne d'Ambre, an isolated mountain of volcanic origin, currently protected within Montagne d'Ambre National Park (MANP). Data from mitochondrial DNA, and phylogenomic data from FrogCap, a sequence capture method, independently confirm that this species complex is monophyletic within the subgenus Ochthomantis, and identify two main clades within it. These two clades are separated by 5.6-6.8% pairwise distance in the mitochondrial 16S rRNA gene and co-occur in MANP, with one distributed at high elevations (940-1375 m a.s.l.) and the other at lower elevations (535-1010 m a.s.l.), but show almost no haplotype sharing in the nuclear RAG1 gene. This occurrence in syntopy without admixture confirms them as independent evolutionary lineages that merit recognition as separate species, and we here refer to them as high-elevation (HE) and low-elevation (LE) lineage; they will warrant taxonomic assessment to confidently assign the name ambreensis to one or the other. Populations of the M. ambreensis complex from elsewhere in northern Madagascar all belong to the LE lineage, although they do occur over a larger elevational range than in Montagne d'Ambre (285-1040 m a.s.l.). Within LE there are several phylogroups (LE1-LE4) of moderately deep divergence (1.5-2.8% in 16S), but phylogroup LE4 that occurs in MANP has a deeply nested phylogenetic position, as recovered separately by mitochondrial and sequence capture datasets. This suggests that HE and LE did not diverge by a local fission of lower and upper populations, but instead arose through a more complex biogeographic scenario. The branching pattern of phylogroups LE1-LE4 shows a clear south-to-north phylogeographic pattern. We derive from these results a testable hypothesis of vicariant speciation that restricted the HE lineage to MANP and the LE candidate species to a climatic refugium further south, with subsequent northwards range expansion and secondary colonization of MANP by LE. These results provide an example for complex assembly of local microendemic amphibian faunas on Madagascar.


Subject(s)
Anura/classification , Anura/genetics , Genetic Speciation , Sympatry/physiology , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genes, RAG-1 , Madagascar , Phylogeny , Phylogeography , RNA, Ribosomal, 16S
20.
Heredity (Edinb) ; 124(3): 423-438, 2020 03.
Article in English | MEDLINE | ID: mdl-31959977

ABSTRACT

Molecular ecologists often rely on phylogenetic evidence for assessing the species-level systematics of newly discovered lineages. Alternatively, the extent of introgression at phylogeographic transitions can provide a more direct test to assign candidate taxa into subspecies or species categories. Here, we compared phylogenetic versus hybrid zone approaches of species delimitation in two groups of frogs from the Western Mediterranean region (Discoglossus and Pelodytes), by using genomic data (ddRAD). In both genera, coalescent analyses recovered almost all nominal taxa as "species". However, the least-diverged pairs D. g. galganoi/jeanneae and P. punctatus/hespericus admix over hundreds of kilometers, suggesting that they have not yet developed strong reproductive isolation and should be treated as conspecifics. In contrast, the comparatively older D. scovazzi/pictus and P. atlanticus/ibericus form narrow contact zones, consistent with species distinctiveness. Due to their complementarity, we recommend taxonomists to combine phylogenomics with hybrid zone analyses to scale the gray zone of speciation, i.e., the evolutionary window separating widely admixing lineages versus nascent reproductively isolated species. The radically different transitions documented here conform to the view that genetic incompatibilities accumulating with divergence generate a weak barrier to gene flow for long periods of time, until their effects multiply and the speciation process then advances rapidly. Given the variability of the gray zone among taxonomic groups, at least from our current abilities to measure it, we recommend to customize divergence thresholds within radiations to categorize lineages for which no direct test of speciation is possible.


Subject(s)
Anura , DNA, Mitochondrial , Gene Flow , Genetic Speciation , Animals , Anura/classification , Anura/genetics , Mediterranean Region , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL