Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Publication year range
1.
Environ Sci Technol ; 58(21): 9303-9313, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752648

ABSTRACT

As part of the Integrated Atmospheric Deposition Network, precipitation (n = 207) and air (n = 60) from five sites and water samples (n = 87) from all five Great Lakes were collected in 2021-2023 and analyzed for 41 per- and polyfluoroalkyl substances (PFAS). These measurements were combined with other available data to estimate the mass budget for four representative compounds, PFBA, PFBS, PFOS, and PFOA for the basin. The median Σ41PFAS concentrations in precipitation across the five sites ranged between 2.4 and 4.5 ng/L. The median Σ41PFAS concentration in lake water was highest in Lake Ontario (11 ng/L) and lowest in Lake Superior (1.3 ng/L). The median Σ41PFAS concentration in air samples was highest in Cleveland at 410 pg/m3 and lowest at Sleeping Bear Dunes at 146 pg/m3. The net mass transfer flows were generally negative for Lakes Superior, Michigan, and Huron and positive for Lakes Erie and Ontario, indicating that the three most northern lakes are accumulating PFAS and the other two are eliminating PFAS. Atmospheric deposition is an important source of PFAS, particularly for Lake Superior.


Subject(s)
Environmental Monitoring , Lakes , Lakes/chemistry , Atmosphere/chemistry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Great Lakes Region , Air Pollutants/analysis
2.
Biol Lett ; 19(5): 20230005, 2023 05.
Article in English | MEDLINE | ID: mdl-37221860

ABSTRACT

While anthropogenic pollutants are known to be a threat to primates, our understanding of exposure to pollutants in situ and their sub-lethal effects is still limited. We used non-invasive biomonitoring to examine associations between faecal concentrations of 97 chemical pollutants and faecal hormone metabolites of cortisol and oestradiol in four primate species inhabiting Kibale National Park, Uganda (chimpanzees-Pan troglodytes, olive baboons-Papio anubis, red colobus-Piliocolobus tephrosceles and red-tailed monkeys-Cercopithecus ascanius). Across all species (n = 71 samples), results demonstrated positive associations of organochlorine pesticides (OCPs) (ß = 0.143, p = 0.020) and organophosphate esters (ß = 0.112, p = 0.003) with cortisol in adult females. Additionally, we observed positive associations of OCPs (ß = 0.192, p = 0.013) and brominated flame retardants (ß = 0.176, p = 0.004) with cortisol in juveniles. Results suggest that cumulative pesticides and flame retardants are disruptive to endocrine function in these populations, which could have implications for development, metabolism and reproduction. Our study further demonstrates that faeces can be an important, non-invasive matrix for examining pollutant-hormone associations in wild primates and other critical wildlife populations.


Subject(s)
Environmental Pollutants , Flame Retardants , Pesticides , Female , Animals , Hydrocortisone , Uganda , Parks, Recreational , Feces , Pan troglodytes , Primates
3.
Environ Sci Technol ; 57(6): 2199-2204, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36730917

ABSTRACT

Persistent insecticides have been classic environmental problems for 60-70 years─perhaps starting with Rachel Carson's indictment of DDT. Both national and international regulations have been put in place over the last 20-30 years to eventually eliminate these compounds from the environment. One focus is the atmosphere, which acts as a major long-range transport route of these pollutants from their numerous sources to many ecosystems. This paper will ask, "Have we have made any progress in eliminating insecticides from the atmosphere?" We will focus only on the atmosphere around the North American Great Lakes and only on concentration measurements made once every 12 days since about 1990 for six classic insecticides. The answer is that some of these compounds (lindane, α-HCH, and endosulfans) are well on their way to being virtually eliminated, while the concentrations of others (DDT, chlordane, and hexachlorobenzene) have not changed much. We speculate that this difference in elimination is a result of soil compaction in cities (DDT, etc.) versus soil mixing in rural areas (lindane, etc.).


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Insecticides , Hexachlorocyclohexane/analysis , DDT/analysis , Ecosystem , Lakes , Air Pollutants/analysis , Soil , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis
4.
Environ Sci Technol ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622003

ABSTRACT

Thirty-five polybrominated diphenyl ethers (PBDEs) and eight other alternative flame retardants were measured in air samples (vapor plus particles) collected at six sites near the North American Great Lakes between 2005 and 2019 as part of the Integrated Atmospheric Deposition Network (IADN). These data were analyzed using a multiple linear regression model to determine spatial and temporal trends. Overall, the levels of flame retardants remain significantly higher in urban sites compared to rural and remote sites except for pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), and total Dechlorane Plus (ΣDP). Here, we report the first findings of decreasing levels of ΣDP at Sturgeon Point, New York. The atmospheric levels of total PBDEs remain unchanged over time near Lakes Michigan and Superior and declined near Lakes Erie and Ontario, with rate constants at the latter two lakes revealing halving times of approximately 7 to 14 years. This work presents results from the first investigation of PBDE source apportionment in the Great Lakes atmosphere. Source apportionment by use of positive matrix factorization (PMF) identified two legacy commercial technical mixtures (i.e., penta-BDE and deca-BDE mixes) and elucidated a factor representing ambient degradation. Our results show that weathered local sources of technical commercial mixtures, and their photolysis contribute most to the total PBDE burden in the Great Lakes atmosphere.

5.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37943968

ABSTRACT

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Subject(s)
Conflict of Interest , Ecosystem , Humans , Environmental Pollution , Biodiversity
6.
Environ Sci Technol ; 56(19): 13845-13857, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36129192

ABSTRACT

We analyzed 72 children's textile products marketed as stain-resistant from US and Canadian stores, particularly school uniforms, to assess if clothing represents a significant route of exposure to per- and polyfluoroalkyl substances (PFAS). Products were first screened for total fluorine (total F) using particle-induced γ-ray emission (PIGE) spectroscopy (n = 72), followed by targeted analysis of 49 neutral and ionic PFAS (n = 57). PFAS were detected in all products from both markets, with the most abundant compound being 6:2 fluorotelomer alcohol (6:2 FTOH). Total targeted PFAS concentrations for all products collected from both countries ranged from 0.250 to 153 000 ng/g with a median of 117 ng/g (0.0281-38 100 µg/m2, median: 24.0 µg/m2). Total targeted PFAS levels in school uniforms were significantly higher than in other items such as bibs, hats, stroller covers, and swimsuits, but comparable to outdoor wear. Higher total targeted PFAS concentrations were found in school uniforms made of 100% cotton than synthetic blends. Perfluoroalkyl acids (PFAAs) precursors were abundant in school uniforms based on the results of hydrolysis and total oxidizable precursor assay. The estimated median potential children's exposure to PFAS via dermal exposure through school uniforms was 1.03 ng/kg bw/day. Substance flow analysis estimated that ∼3 tonnes/year (ranging from 0.05 to 33 tonnes/year) of PFAS are used in US children's uniforms, mostly of polymeric PFAS but with ∼0.1 tonne/year of mobile, nonpolymeric PFAS.


Subject(s)
Fluorocarbons , Canada , Carboxylic Acids/analysis , Child , Clothing , Environmental Monitoring , Fluorine/analysis , Fluorocarbons/analysis , Humans
7.
Environ Sci Technol ; 55(6): 3539-3548, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33616389

ABSTRACT

There is very little information on the gas-particle partition and spatial and seasonal variations of current-use pesticides (CUPs) in the Great Lakes basin. The atmospheric concentrations of 36 CUPs were measured in 24 h gas and particle samples collected in 2017 at six sites in the Great Lakes basin. Thirteen individual CUPs were detected at least once in both gas- and particle-phase samples, with chlorothalonil, trifluralin, metolachlor, λ-cyhalothrin, cypermethrin, and chlorpyrifos detected in >50% samples. The gas-particle partitioning analysis suggests that gas-phase chemicals like trifluralin and chlorpyrifos were not influenced by either temperature or relative humidity while particle-phase chemicals like metolachlor were marginally and negatively correlated with relative humidity. Median total CUP concentrations were 339, 238, 84, 33, 60, and 6.0 pg/m3 at Chicago, Cleveland, Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor, respectively. The concentrations of total CUPs and most individual CUPs were generally higher at the urban sites of Chicago and Cleveland than at the rural/remote sites of Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor. Chlorothalonil, trifluralin, bifenthrin, and chlorpyrifos were the most abundant individual CUPs among fungicides, herbicides, pyrethroid insecticides, and other insecticides, respectively. The spatio-seasonal variation suggests that fungicides at Sturgeon Point and Sleeping Bear Dunes, with the highest fraction of agricultural land use, were associated with agricultural activities, while pyrethroid insecticides were generally driven by human activities.


Subject(s)
Air Pollutants , Pesticides , Air Pollutants/analysis , Chicago , Environmental Monitoring , Humans , Lakes , Pesticides/analysis , Seasons
8.
Environ Sci Technol ; 55(8): 4474-4482, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33710877

ABSTRACT

Elucidation of the chemical components of airborne fine particulate matter (PM2.5) facilitates the characterization of atmospheric contamination sources and associated human exposure risks. In the present study, we employed a high-throughput analytical approach to investigate the abundance and distribution of 163 plastic additives in ambient PM2.5 collected from 94 different sites across the Pearl River Delta region, China. These chemicals are from six categories, including organophosphate esters (OPEs), phthalate esters (PAEs), PAE replacements, bisphenol analogues, UV stabilizers, and antioxidants. Ninety-three of them exhibited a detection frequency greater than 50% in PM2.5, while the combined concentrations of target plastic additives ranged from 610 to 49,400 µg/g (median: 3500 µg/g) across sites. By category, concentrations of PAEs (median: 2710 µg/g) were one to three orders of magnitude greater than those of other groups, followed by PAE replacements (540 µg/g) and OPEs (76.2 µg/g). Chemical-dependent exposure risks to PM2.5-bound plastic additives were characterized via the estimated daily intake and hazard quotient (HQ) approaches, which resulted in two different risk prioritization systems. Although the HQ approach suggested no or very low health concerns when considering individual chemicals, the complexity of co-concurrent chemicals in PM2.5 raises the concern on potential health risks from exposure to airborne particles and a cocktail of chemical components.


Subject(s)
Particulate Matter , Plastics , China , Environmental Monitoring , Esters/analysis , Humans , Particulate Matter/analysis , Rivers
9.
Environ Sci Technol ; 54(15): 9345-9355, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32672444

ABSTRACT

The present study provides a comprehensive investigation of three suites of commonly used synthetic additives: phenolic and amino antioxidants and ultraviolet filters. The concentrations of 47 such compounds and their transformation products were measured in 20 atmospheric particle samples collected in Chicago, in 21 Canadian e-waste dust samples, in 32 Canadian and United States' residential dust samples, and in 10 sediment samples collected from the Chicago Sanitary and Ship Canal. Despite their large production volumes in the United States, environmental data on antioxidants and UV filters in North America is limited. These compounds were detected in all the samples, indicating their ubiquitous distribution in the North American environment. The most prevalent compounds were 2,6-di-t-butyl-p-benzoquinone, diphenylamine, 4,4'-di-t-octyl diphenylamine, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-methoxybenzophenone. The e-waste dust contained significantly greater total concentrations of these compounds than the Canadian residential dust, while intermediate levels were detected in the United States residential dust. The sediment samples showed relatively high levels of N,N'-diphenylbenzidine, the source of which is unclear, and some benzotriazole UV filters. Daily intake rates by dust ingestion for these compounds ranged from 1-10 ng/(kg·day) for adults to 10-100 ng/(kg·day) for toddlers. Due to the wide distribution of these compounds in both the ambient and built environments, future research on their potential toxic effects on people and ecosystems is important.


Subject(s)
Air Pollution, Indoor , Antioxidants , Adult , Air Pollution, Indoor/analysis , Antioxidants/analysis , Canada , Chicago , Child, Preschool , Dust/analysis , Ecosystem , Environmental Exposure , Environmental Monitoring , Humans , North America , United States
10.
Environ Sci Technol ; 54(9): 5400-5408, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32289228

ABSTRACT

Organophosphate esters (OPEs) were measured in atmospheric vapor and particle samples collected at six sites in the Laurentian Great Lakes basin every 12 days from January to December 2017 (inclusive). Median total OPE concentrations (∑OPEs) ranged from 41.2 pg/m3 at Eagle Harbor, Michigan to 1320 pg/m3 at Cleveland, Ohio. Tris(1-chloro-2-propyl) phosphate (TCIPP) was the most abundant OPE measured in these samples and contributed 26% to ∑OPE concentrations. The spatial distribution of OPEs among the sites suggests that OPEs with longer atmospheric half-lives and relatively high octanol-air partitioning coefficients (KOA) are likely to have a greater potential to undergo long-range atmospheric transport. OPE particle-phase partitioning fraction (Φ) significantly and positively correlated with KOA, but declined with increasing relative humidity. Φ values varied seasonally and were lower in the summer for volatile OPEs. In addition, samples collected in the summer had significantly higher levels of ∑OPEs than samples collected in the winter. The estimated dry deposition flow of ∑OPEs to the Great Lakes was 1.22 tons/year, exceeding the corresponding flows reported for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs).


Subject(s)
Flame Retardants/analysis , Lakes , Atmosphere , Environmental Monitoring , Esters , Michigan , Ohio , Organophosphates
11.
Environ Sci Technol ; 54(1): 325-334, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31820947

ABSTRACT

Exposure to flame retardants (FRs) is associated with adverse effects on human health. Focusing on three FR groups, including polybrominated diphenyl ethers (PBDEs), organophosphate FRs (OPFRs), and novel brominated FRs (nBFRs), we determined the levels of these chemicals in indoor air in homes in rural Central Appalachia using passive air samplers and personal exposures in the residents of these homes using silicone wristbands. We also investigated the relationships between the FR levels in wristbands and the thyroid function. The median total concentrations of PBDEs, OPFRs, and nBFRs were 210, 25 000, and 69 pg/m3 in indoor air, and 49, 670, and 110 ng/g in wristbands, respectively. The most abundant chemicals in both air and wristbands were BDE-47 and -99 among PBDEs, tris[(2R)-1-chloro-2-propyl] phosphate among OPFRs, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and bis(2-ethylhexyl) tetrabromophthalate among nBFRs. In gender-specific regression models that were controlled for age and smoking, significant associations were observed between BDE-99, BDE-197, and 2-ethylhexyldiphenyl phosphate (EHDP) and free thyroxine (FT4), between BDE-100 and free triiodothyronine (FT3), and between anti-Dechlorane Plus (DP) and thyroid-stimulating hormone (TSH). In particular, most penta-BDE congeners were significantly or marginally significantly associated with FT4 and FT3 for both females and males. Our results suggest that wristbands can be used as suitable exposure monitors for evaluating human exposure to FRs.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Appalachian Region , Dust , Environmental Monitoring , Female , Halogenated Diphenyl Ethers , Humans , Male , Organophosphates , Thyroid Gland
12.
Environ Sci Technol ; 54(19): 12013-12023, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32900185

ABSTRACT

The habitats of wild primates are increasingly threatened by surrounding anthropogenic pressures, but little is known about primate exposure to frequently used chemicals. We applied a novel method to simultaneously measure 21 legacy pesticides (OCPs), 29 current use pesticides (CUPs), 47 halogenated flame retardants (HFRs), and 19 organophosphate flame retardants in feces from baboons in the U.S.A., howler monkeys in Costa Rica, and baboons, chimpanzees, red-tailed monkeys, and red colobus in Uganda. The most abundant chemicals were α-hexachlorocyclohexane (α-HCH), ß-hexachlorocyclohexane (ß-HCH), and hexachlorobenzene among OCPs across all sites, chlorpyrifos among CUPs in Costa Rica and Indiana, decabromodiphenylethane (DBDPE) in Costa Rica and Indiana and 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) in Uganda as HFRs, and tris(2-butoxyethyl) phosphate (TBOEP) as OPFRs across all sites. The detected chemical concentrations were generally higher in red-tailed monkeys and red colobus than in chimpanzees and baboons. Our methods can be used to examine the threat of chemical pollutants to wildlife, which is critical for endangered species where only noninvasive methods can be used.


Subject(s)
Flame Retardants , Pesticides , Animals , Environmental Monitoring , Feces/chemistry , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Indiana , Organophosphates , Pesticides/analysis , Primates , Uganda
13.
Environ Sci Technol ; 58(11): 4837-4839, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437593
15.
Environ Sci Technol ; 53(11): 6171-6181, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31081620

ABSTRACT

Protected areas have developed alongside intensive changes in land use and human settlements in the neighboring landscape. Here, we investigated the occurrence of 21 organochlorine pesticides (OCPs), 14 current use pesticides (CUPs), 47 halogenated flame retardants (HFRs), and 19 organophosphate esters (OPEs) in air around Las Cruces (LC) and La Selva (LS) Biological Stations, Costa Rica, and Kibale National Park (KNP), Uganda using passive air samplers (PAS) with polyurethane foam (PUF) discs (PAS-PUF). Significantly higher concentrations of CUPs were observed around LS, while LC had a higher concentration of OCPs. Land use analysis indicated that LS had a higher fraction of agriculture than LC (33% vs 14%), suggesting the higher CUPs concentration at LS was related to pesticide intensive crops, while higher OCPs concentration at LC may be attributed to the area's long agricultural history characterized by small-scale subsistence farming or long-range transport. In Uganda, CUPs and OCPs were generally lower than in Costa Rica, but high concentrations of HFRs were observed inside KNP, possibly due to human activity at research camps near the protected forest. This is the first study that documented the occurrence of anthropogenic chemicals in the air at protected areas with tropical forests.


Subject(s)
Air Pollutants , Flame Retardants , Pesticides , Costa Rica , Environmental Monitoring , Uganda
16.
Environ Sci Technol ; 52(11): 6177-6186, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29762021

ABSTRACT

The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m3) than at the rural and remote sites (0.07-530 pg/m3). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.


Subject(s)
Air Pollutants , Pesticides , Environmental Monitoring , Great Lakes Region , Humans , Seasons
17.
Environ Sci Technol ; 52(22): 12997-13003, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30373364

ABSTRACT

Using high-resolution mass spectrometry, we identified tri(2,4-di- t-butylphenyl) phosphate (TDTBPP) in e-waste dust. This is a previously unsuspected pollutant that had not been reported before in the environment. To assess its abundance in the environment, we measured its concentration in e-waste dust, house dust, sediment from the Chicago Ship and Sanitary Canal, Indiana Harbor water filters, and filters from high-volume air samplers deployed in Chicago, IL. To provide a context for interpreting these quantitative results, we also measured the concentrations of triphenyl phosphate (TPhP), a structurally similar compound, in these samples. Median concentrations of TDTBPP and TPhP were 14 400 and 41 500 ng/g, respectively, in e-waste dust and 4900 and 2100 ng/g, respectively, in house dust. TDTBPP was detected in sediment, water, and air with median concentrations of 527 ng/g, 3700 pg/L, and 149 pg/m3, respectively. TDTBPP concentrations were generally higher or comparable to those of TPhP in all media analyzed, except for the e-waste dust. Exposure from dust ingestion and dermal absorption in the e-waste recycling facility and in homes was calculated. TDTBPP exposure was 571 ng/kg bw/day in the e-waste recycling facility (pro-rated for an 8-h shift), and 536 ng/kg bw and 7550 ng/kg bw/day for adults and toddlers, respectively, in residential environments.


Subject(s)
Air Pollution, Indoor , Environmental Pollutants , Flame Retardants , Adult , Chicago , Dust , Humans , Indiana , Phosphates
18.
Environ Sci Technol ; 52(6): 3599-3607, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29509415

ABSTRACT

A high molecular weight compound, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), was detected during the analysis of brominated flame retardants in dust samples collected from an electrical and electronic waste (e-waste) recycling facility in Ontario, Canada. Gas chromatography coupled with both high-resolution and low-resolution mass spectrometry (MS) was used to determine TTBP-TAZ's chemical structure and concentrations. To date, TTBP-TAZ has only been detected in plastic casings of electrical and electronic equipment and house dust from The Netherlands. Here we report on the concentrations of TTBP-TAZ in selected samples from North America: e-waste dust ( n = 7) and air ( n = 4), residential dust ( n = 30), and selected outdoor air ( n = 146), precipitation ( n = 19), sediment ( n = 11) and water ( n = 2) samples from the Great Lakes environment. TTBP-TAZ was detected in all the e-waste dust and air samples, and in 70% of residential dust samples. The median concentrations of TTBP-TAZ in these three types of samples were 5540 ng/g, 5.75 ng/m3 and 6.76 ng/g, respectively. The flame retardants 2,4,6-tribromophenol, tris(2,3-dibromopropyl) isocyanurate, and 3,3',5,5'-tetrabromobisphenol A bis(2,3-dibromopropyl) ether, BDE-47 and BDE-209 were also measured for comparison. None of these other flame retardants concentrations was significantly correlated with those of TTBP-TAZ in any of the sample types suggesting different sources. TTBP-TAZ was not detected in any of the outdoor environmental samples, which may relate to its application history and physicochemical properties. This is the first report of TTBP-TAZ in North America.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Flame Retardants , Dust , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers , Hydrocarbons, Brominated , Netherlands , North America , Ontario , Triazines
20.
Environ Sci Technol ; 51(17): 9960-9969, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28817260

ABSTRACT

In this study, we measured the concentrations of 65 flame retardants in water samples from five Lake Michigan tributaries. These flame retardants included organophosphate esters (OPEs), brominated flame retardants (BFRs), and Dechlorane-related compounds. A total of 59 samples, including both the particulate and the dissolved phases, were collected from the Grand, Kalamazoo, Saint Joseph, and Lower Fox rivers and from the Indiana Harbor and Ship Canal (IHSC) in 2015. OPEs were the most abundant among the targeted compounds with geometric mean concentrations ranging from 20 to 54 ng/L; OPE concentrations were comparable among the five tributaries. BFR concentrations were about 1 ng/L, and the most-abundant compounds were bis(2-ethylhexyl) tetrabromophthalate, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, and decabromodiphenyl ether. The highest BFR concentrations were measured in either the IHSC or the Saint Joseph River. The dechlorane-related compounds were detected at low concentrations (<1 pg/L). The fraction of target compounds in the particulate phase relative to the dissolved phase varied by chemical and tended to increase with their octanol-water partition coefficient. The chemical loading from all the five tributaries into Lake Michigan were <10 kg/year for the BFRs and about 500 kg/year for the OPEs.


Subject(s)
Environmental Monitoring , Flame Retardants/analysis , Water Pollutants, Chemical/analysis , Great Lakes Region , Halogenated Diphenyl Ethers , Indiana , Lakes , Water
SELECTION OF CITATIONS
SEARCH DETAIL