Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Inorg Chem ; 62(49): 20080-20095, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37994001

ABSTRACT

Organelle-targeted photosensitizers (PSs) for photodynamic therapy (PDT) are considered as an effective therapeutic strategy for the development of next generation PSs with the least side effects and high therapeutic efficacy. However, multiorganelle targeted PSs eliciting PDT via both type I and type II mechanisms are scarce. Herein, a series of cyclometalated iridium(III) complexes were formulated [Ir(C∧N)2(S∧S)] (C∧N = 2-phenylpyridine (ppy) and 2-(thiophen-2-yl)pyridine (thpy); S∧S = diethyldithiocarbamate (DEDTC), morpholine-N-dithiocarbamate (MORDTC) and methoxycarbonodithioate (MEDTC)) and the newly designed complexes Ir2@DEDTC and Ir1@MEDTC were characterized by single crystal X-ray crystallography. Complexes containing thpy as C∧N ligand exhibit excellent photophysical properties such as red-shifted emission, high singlet oxygen quantum yield (ϕΔ) and longer photoluminescence lifetime when compared with complexes containing ppy ligands. Ir2@DEDTC exhibits the highest Ï•Δ and photoluminescence lifetimes among the synthesized complexes. Therefore, Ir2@DEDTC was chosen to evaluate the photosensitizing ability to produce reactive oxygen species (ROS). Upon blue light irradiation (456 nm), it efficiently produces ROS, i.e., hydroxy radical (•OH) and singlet oxygen (1O2), which was confirmed by electron paramagnetic resonance (EPR) spectroscopy. In vitro photocytotoxicity toward HCT116, HeLa, and PC3 cell lines showed that out of all the synthesized complexes, Ir2@DEDTC has the highest photocytotoxic index (PI > 400) value. Ir2@DEDTC is efficiently taken up by the HCT116 cell line and accumulated mainly in the lysosome and mitochondria of the cells, and after PDT treatment, it elicits cell shrinkage, membrane blebbing, and DNA fragmentation. The phototherapeutic efficacy of Ir2@DEDTC has been investigated against 3D spheroids considering its ability to mimic some of the basic features of solid tumors. The morphology was drastically altered in the Ir2@DEDTC treated 3D spheroid after the light irradiation unleashed the potential of the Ir(III) dithiocarbamate complex as a superior PS for PDT. Hence, mitochondria and lysosome targeted photoactive cyclometalated Ir(III) dithiocarbamate complex exerting oxidative stress via both type I and type II PDT can be regarded as a dual-organelle targeted two-pronged approach for enhanced PDT.


Subject(s)
Coordination Complexes , Photochemotherapy , Humans , Coordination Complexes/chemistry , Iridium/pharmacology , Iridium/chemistry , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism , Ligands , Photosensitizing Agents/chemistry
2.
Org Biomol Chem ; 21(21): 4455-4464, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37191120

ABSTRACT

Highly water-soluble small molecule-based prodrugs (5-FUPD and SAHAPD) are formulated. They comprise a phosphate group to lock the active drug payload (5-fluorouracil and SAHA) along with a turn-on fluorophore consisting of a glutathione (GSH) depletory feature. Installation of the phosphate group along with purification of final product has been accomplished in an operationally facile manner. Activation of the prodrugs is facilitated by alkaline phosphatase (ALP)-mediated hydrolysis of the phosphate group followed by 1,8-elimination. The prodrugs were found to be highly effective against ALP flared human cervical cancer (HeLa) and liver cancer (HepG2) cell lines. Most notably, they were found to be innocuous to normal liver cells (WRL-68).


Subject(s)
Neoplasms , Prodrugs , Humans , Alkaline Phosphatase/metabolism , Prodrugs/pharmacology , Precision Medicine , Hydrolysis , Phosphates , Neoplasms/drug therapy
3.
J Am Soc Nephrol ; 33(10): 1841-1856, 2022 10.
Article in English | MEDLINE | ID: mdl-36038265

ABSTRACT

BACKGROUND: Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS: To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb ß 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS: Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb ß 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb ß 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the ß 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb ß 3 activity in vitro. CONCLUSIONS: Carbamylation of α IIb ß 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb ß 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.


Subject(s)
Platelet Glycoprotein GPIIb-IIIa Complex , Uremia , Humans , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Carbamylation , Tandem Mass Spectrometry , Blood Platelets , Uremia/complications , Uremia/metabolism , Fibrinogen/chemistry , Fibrinogen/metabolism , Amino Acids
4.
Reproduction ; 162(2): 117-127, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34034233

ABSTRACT

Peptidylarginine deiminases (PAD) enzymes were initially characterized in uteri, but since then little research has examined their function in this tissue. PADs post-translationally convert arginine residues in target proteins to citrulline and are highly expressed in ovine caruncle epithelia and ovine uterine luminal epithelial (OLE)-derived cell line. Progesterone (P4) not only maintains the uterine epithelia but also regulates the expression of endometrial genes that code for proteins that comprise the histotroph and are critical during early pregnancy. Given this, we tested whether P4 stimulates PAD-catalyzed histone citrullination to epigenetically regulate expression of the histotroph gene insulin-like growth factor binding protein 1 (IGFBP1) in OLE cells. 100 nM P4 significantly increases IGFBP1 mRNA expression; however, this increase is attenuated by pre-treating OLE cells with 100 nM progesterone receptor antagonist RU486 or 2 µM of a pan-PAD inhibitor. P4 treatment of OLE cells also stimulates citrullination of histone H3 arginine residues 2, 8, and 17 leading to enrichment of the ovine IGFBP1 gene promoter. Since PAD2 nuclear translocation and catalytic activity require calcium, we next investigated whether P4 triggers calcium influx in OLE cells. OLE cells were pre-treated with 10 nM nicardipine, an L-type calcium channel blocker, followed by stimulation with P4. Using fura2-AM imaging, we found that P4 initiates a rapid calcium influx through L-type calcium channels in OLE cells. Furthermore, this influx is necessary for PAD2 nuclear translocation and resulting citrullination of histone H3 arginine residues 2, 8, and 17. Our work suggests that P4 stimulates rapid calcium influx through L-type calcium channels initiating PAD-catalyzed histone citrullination and an increase in IGFBP1 expression.


Subject(s)
Citrullination , Citrulline/chemistry , Gene Expression Regulation/drug effects , Histones/chemistry , Progesterone/pharmacology , Uterus/metabolism , Animals , Endometrium/drug effects , Endometrium/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Insulin-Like Growth Factor Binding Protein 1 , Pregnancy , Progestins/pharmacology , Sheep , Uterus/drug effects
5.
Biochemistry ; 59(8): 933-942, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32049506

ABSTRACT

Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents degeneration, thereby demonstrating that SARM1 is a promising therapeutic target. Recently, SARM1 was shown to promote neurodegeneration via its ability to hydrolyze NAD+, forming nicotinamide and ADP ribose (ADPR). Herein, we describe the initial kinetic characterization of full-length SARM1, as well as the truncated constructs corresponding to the SAM1-2TIR and TIR domains, highlighting the distinct challenges that have complicated efforts to characterize this enzyme. Moreover, we show that bacterially expressed full-length SARM1 (kcat/KM = 6000 ± 2000 M-1 s-1) is at least as active as the TIR domain alone (kcat/KM = 1500 ± 300 M-1 s-1). Finally, we show that the SARM1 hydrolyzes NAD+ via an ordered uni-bi reaction in which nicotinamide is released prior to ADPR.


Subject(s)
Armadillo Domain Proteins/chemistry , Cytoskeletal Proteins/chemistry , Adenosine Diphosphate Ribose/chemistry , Animals , Armadillo Domain Proteins/antagonists & inhibitors , Armadillo Domain Proteins/isolation & purification , Caenorhabditis elegans/chemistry , Caenorhabditis elegans Proteins/chemistry , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/isolation & purification , Enzyme Assays , Enzyme Inhibitors/chemistry , Humans , Kinetics , Niacinamide/analogs & derivatives , Protein Domains , Receptors, G-Protein-Coupled/chemistry
6.
Curr Top Microbiol Immunol ; 420: 233-251, 2019.
Article in English | MEDLINE | ID: mdl-30203394

ABSTRACT

Protein arginine deiminases (PADs) catalyze the post-translational deimination of peptidyl arginine to form peptidyl citrulline. This modification is increased in multiple inflammatory diseases and in certain cancers. PADs regulate a variety of signaling pathways including apoptosis, terminal differentiation, and transcriptional regulation. Activity-based protein profiling (ABPP) probes have been developed to understand the role of the PADs in vivo and to investigate the effect of protein citrullination in various pathological conditions. Furthermore, these ABPPs have been utilized as a platform for high-throughput inhibitor discovery. This review will showcase the development of ABPPs targeting the PADs. In addition, it provides a brief overview of PAD structure and function along with recent advances in PAD inhibitor development.


Subject(s)
Citrullination , Citrulline/metabolism , Protein-Arginine Deiminases/analysis , Protein-Arginine Deiminases/metabolism , Proteomics/methods , Citrullination/drug effects , Citrulline/chemistry , Disease , Humans , Molecular Probe Techniques , Protein-Arginine Deiminases/antagonists & inhibitors , Protein-Arginine Deiminases/chemistry
7.
Ecotoxicology ; 29(1): 75-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31786707

ABSTRACT

Increasing use of silver nanoparticles (AgNPs) in myriad applications including electronics, medicines and agriculture has led to serious concerns regarding its release to plant ecosystems. Over the years, numerous studies have demonstrated the toxic impact of AgNPs in a variety of cell and tissue systems involved in vegetative growth across a wide range of plant species. However, assessing their impact on haploid phase of plant life cycle was restricted only to a study with Kiwifruit. In this study, in vitro pollen performance of Peltophorum pterocarpum at two endpoints i.e., germination and tube growth was assessed to evaluate the impact of nanoparticulate or ionic form of silver. Increasing concentrations of AgNO3/AgNPs significantly reduced the pollen germination and retarded the tube growth. The EC 50 values indicated a more potent toxic effect of AgNPs than AgNO3 on pollen germination as well as tube growth. Impairment of pollen performance was more pronounced at the stage of emergence of pollen tube. Extensive alterations in the muri and lumen of exine as revealed through SEM analysis and subsequent blockage of germpore might disrupt the emergence of pollen tube. The dynamics of pollen tube growth was analyzed with polynomial models of different degrees. A high degree of polynomial, the quintic model was able to approximate the real data points with highest coefficient of determination and smallest RMSE, compared to other models. An oscillating pattern of tube growth was portrayed with the passage of time in all the treatments that fits well with the established mechanistic oscillatory model of tube growth. It appears that exposure to AgNO3/AgNPs inhibited pollen germination and retarded tube growth without affecting the oscillatory behavior of tip-growth.


Subject(s)
Fabaceae/physiology , Metal Nanoparticles/toxicity , Pollen/drug effects , Silver/toxicity , Fabaceae/drug effects , Germination/drug effects
8.
Int J Mol Sci ; 21(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290104

ABSTRACT

Citrullination is a post-translational modification (PTM) in which positively charged peptidyl-arginine is converted into neutral peptidyl-citrulline by peptidylarginine deiminase (PAD or PADI) enzymes. The full protein citrullinome in many tissues is unknown. Herein, we used mass spectrometry and identified 107 citrullinated proteins in the lactation day 9 (L9) mouse mammary gland including histone H2A, α-tubulin, and ß-casein. Given the importance of prolactin to lactation, we next tested if it stimulates PAD-catalyzed citrullination using mouse mammary epithelial CID-9 cells. Stimulation of CID-9 cells with 5 µg/mL prolactin for 10 min induced a 2-fold increase in histone H2A citrullination and a 4.5-fold increase in α-tubulin citrullination. We next investigated if prolactin-induced citrullination regulates the expression of lactation genes ß-casein (Csn2) and butyrophilin (Btn1a1). Prolactin treatment for 12 h increased ß-casein and butyrophilin mRNA expression; however, this increase was significantly inhibited by the pan-PAD inhibitor, BB-Cl-amidine (BB-ClA). We also examined the effect of tubulin citrullination on the overall polymerization rate of microtubules. Our results show that citrullinated tubulin had a higher maximum overall polymerization rate. Our work suggests that protein citrullination is an important PTM that regulates gene expression and microtubule dynamics in mammary epithelial cells.


Subject(s)
Citrullination , Lactation , Mammary Glands, Animal/metabolism , Milk Proteins/metabolism , Animals , Arginine/metabolism , Cells, Cultured , Citrullination/drug effects , Citrulline/metabolism , Female , Gas Chromatography-Mass Spectrometry , Gene Expression , Histones/metabolism , Humans , Mice , Prolactin/metabolism , Prolactin/pharmacology , Protein Processing, Post-Translational , Protein-Arginine Deiminases/metabolism , Proteome , Proteomics/methods , RNA, Messenger/genetics , Time Factors
9.
Biochemistry ; 58(10): 1388-1399, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30742415

ABSTRACT

A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl ß-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl ß-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.


Subject(s)
Escherichia coli Proteins/metabolism , Glucose Dehydrogenases/genetics , Glucosides/metabolism , Catalysis , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Glucose/chemistry , Glucose Dehydrogenases/metabolism , Glucosides/genetics , Kinetics , Multigene Family , Oxidation-Reduction , Oxidoreductases/metabolism , Substrate Specificity
10.
Plant Mol Biol ; 100(1-2): 59-71, 2019 May.
Article in English | MEDLINE | ID: mdl-30796712

ABSTRACT

KEY MESSAGE: RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.


Subject(s)
Disease Resistance/genetics , Oryza/genetics , Oryza/microbiology , Pectins/pharmacology , Plant Diseases/microbiology , RNA Interference , Rhizoctonia/genetics , Transcriptome/genetics , Disease Progression , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Plant Diseases/genetics , Polygalacturonase/genetics , Polygalacturonase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhizoctonia/drug effects , Sequence Analysis, RNA , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL