Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Parasitol Res ; 118(10): 3067-3076, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392413

ABSTRACT

This study is a report on the anti-Leishmania activity of Morita-Baylis-Hillman (MBH) homodimers adducts against the promastigote and axenic amastigote forms of Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis and on the cytotoxicity of these adducts to human blood cells. Both studied homodimers, MBH 1 and MBH 2, showed activity against the promastigote forms of L. infantum and L. amazonensis, which are responsible for visceral and cutaneous leishmaniasis, respectively. Additionally, the homodimers presented biological activity against the axenic amastigote forms of these two Leishmania species. The adducts exhibited no hemolytic activity to human peripheral blood mononuclear cells or erythrocytes at the tested concentrations and achieved higher selectivity indices than amphotericin B. Evaluation of cell death by apoptosis revealed that the homodimers had better apoptosis/necrosis profiles than amphotericin B in the promastigote forms of both L. infantum and L. amazonensis. In conclusion, these Morita-Baylis-Hillman adducts had anti-Leishmania activity in an in vitro model and may thus be promising molecules in the search for new drugs to treat leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Amphotericin B/pharmacology , Animals , Antiprotozoal Agents/chemistry , Apoptosis/drug effects , Dimerization , Drug Evaluation, Preclinical , Hemolysis , Humans , Leishmania/growth & development
2.
Immunology ; 155(4): 499-504, 2018 12.
Article in English | MEDLINE | ID: mdl-30099739

ABSTRACT

There is a need for more detailed elucidation of T-cell immunity in chikungunya infection. CD8 T cells are one of main actors against viruses. Here, we analysed CD8+ T lymphocytes from patients in the acute and chronic phases of chikungunya disease (CHIKD). Our results demonstrate that CD8+ T cells expressed higher ex vivo granzyme B, perforin and CD107A expression in patients in the acute phase of CHIKD compared with healthy individuals and higher ex vivo expression of CD69, interleukin-17A, interleukin-10 and CD95 ligand, and co-expression of CD95/CD95 ligand. These results elucidate the importance of these lymphocytes, demonstrating immune mechanisms mediated in human chikungunya infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chikungunya Fever/immunology , Chikungunya virus/immunology , Cytokines/biosynthesis , Lymphocyte Activation/immunology , Antigens, CD/biosynthesis , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antigens, Differentiation, T-Lymphocyte/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Cytokines/immunology , Cytotoxicity, Immunologic/immunology , Fas Ligand Protein/biosynthesis , Fas Ligand Protein/immunology , Granzymes/biosynthesis , Granzymes/immunology , Humans , Interleukin-10/biosynthesis , Interleukin-10/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Lectins, C-Type/biosynthesis , Lectins, C-Type/immunology , Lysosomal-Associated Membrane Protein 1/biosynthesis , Lysosomal-Associated Membrane Protein 1/immunology , Perforin/biosynthesis , Perforin/immunology , fas Receptor/biosynthesis , fas Receptor/immunology
3.
Biomed Pharmacother ; 90: 253-261, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28364597

ABSTRACT

BACKGROUND: Acridine derivatives, including amsacrine, have antitumor activity. However, side effects, development of resistance and their low bioavailability, have limited their use. Herein, we described the synthesis, and evaluated the toxicity and antitumor activity of a new amsacrine analogous, the N'-(2-chloro-6-methoxy-acridin-9-yl)-2-cyano-3-(4-dimethylaminophenyl)-acrilohidrazida (ACS-AZ10). METHODS: The compound was obtained in a linear pathway where the ASC-Az intermediate was obtained by coupling of 6,9-dichloro-3-methoxy-acridine and 2-ciany-acethohidrazide followed by condensation with the corresponding aldehyde. The toxicity of ACS-AZ10 was evaluated in mice using acute toxicity and micronucleus assays. Ehrlich ascites carcinoma model was used to investigate the antitumor activity and toxicity of ACS-AZ10 (7.5, 15 or 30mg/kg, i.p.), after nine days of treatment. Cell cycle and angiogenesis were also evaluated. RESULTS: The ASC-AZ10 was obtained with satisfactory yields and its structure was confirmed by spectroscopic and spectrometric techniques. On acute toxicity study, ACS-AZ10 (2000mg/kg, i.p.) induced transient depressant effects on central nervous system. The LD50 was approximately 2500mg/kg. ACS-AZ10 (15 or 30mg/kg) displayed significant antitumor activity considering the tumor weight and volume, cell viability, and total Ehrlich cell count. ACS-AZ10 (7.5mg/kg) induced an increase in sub-G1 peak, suggesting apoptosis. At 15mg/kg ACS-AZ10 induced cell cycle arrest in G2/M phase and a reduction in the percentage of cells in G0/G1 and S phases, suggesting a pre-mitotic blockade. ACS-AZ10 reduced the microvessel density, indicating an antiangiogenic effect. Weak hematological, biochemical and histopathological toxicity were observed. The compound doesn't show genotoxicity in micronucleus assay. CONCLUSIONS: ACS-AZ10 has potent antitumor activity in vivo along with low toxicity.


Subject(s)
Acridines/pharmacology , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Ascites/drug therapy , Carcinoma, Ehrlich Tumor/drug therapy , Cell Cycle Checkpoints/drug effects , Animals , Apoptosis/drug effects , Ascites/metabolism , Carcinoma, Ehrlich Tumor/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female
SELECTION OF CITATIONS
SEARCH DETAIL