Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 143(51): 21461-21473, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34927426

ABSTRACT

Polymers that release small molecules in response to mechanical force are promising materials for a variety of applications ranging from sensing and catalysis to targeted drug delivery. Within the rapidly growing field of polymer mechanochemistry, stress-sensitive molecules known as mechanophores are particularly attractive for enabling the release of covalently bound payloads with excellent selectivity and control. Here, we review recent progress in the development of mechanophore-based molecular release platforms and provide an optimistic, yet critical perspective on the fundamental and technological advancements that are still required for this promising research area to achieve significant impact.

2.
Chem Sci ; 11(17): 4525-4530, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-34122911

ABSTRACT

Mechanochromic molecular force probes conveniently report on stress and strain in polymeric materials through straightforward visual cues. We capitalize on the versatility of the naphthopyran framework to design a series of mechanochromic mechanophores that exhibit highly tunable color and fading kinetics after mechanochemical activation. Structurally diverse naphthopyran crosslinkers are synthesized and covalently incorporated into silicone elastomers, where the mechanochemical ring-opening reactions are achieved under tension to generate the merocyanine dyes. Strategic structural modifications to the naphthopyran mechanophore scaffold produce dramatic differences in the color and thermal electrocyclization behavior of the corresponding merocyanine dyes. The color of the merocyanines varies from orange-yellow to purple upon the introduction of an electron donating pyrrolidine substituent, while the rate of thermal electrocyclization is controlled through electronic and steric factors, enabling access to derivatives that display both fast-fading and persistent coloration after mechanical activation and subsequent stress relaxation. In addition to identifying key structure-property relationships for tuning the behavior of the naphthopyran mechanophore, the modularity of the naphthopyran platform is demonstrated by leveraging blends of structurally distinct mechanophores to create materials with desirable multicolor mechanochromic and complex stimuli-responsive behavior, expanding the scope and accessibility of force-responsive materials for applications such as multimodal sensing.

SELECTION OF CITATIONS
SEARCH DETAIL