Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
2.
Scand J Public Health ; : 14034948241233359, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439134

ABSTRACT

BACKGROUND: The association between ambient air temperature and mortality has not been assessed in Norway. This study aimed to quantify for seven Norwegian cities (Oslo, Bergen, Stavanger, Drammen, Fredrikstad, Trondheim and Tromsø) the non-accidental, cardiovascular and respiratory diseases mortality burden due to non-optimal ambient temperatures. METHODS: We used a historical daily dataset (1996-2018) to perform city-specific analyses with a distributed lag non-linear model with 14 days of lag, and pooled results in a multivariate meta-regression. We calculated attributable deaths for heat and cold, defined as days with temperatures above and below the city-specific optimum temperature. We further divided temperatures into moderate and extreme using cut-offs at the 1st and 99th percentiles. RESULTS: We observed that 5.3% (95% confidence interval (CI) 2.0-8.3) of the non-accidental related deaths, 11.8% (95% CI 6.4-16.4) of the cardiovascular and 5.9% (95% CI -4.0 to 14.3) of the respiratory were attributable to non-optimal temperatures. Notable variations were found between cities and subgroups stratified by sex and age. The mortality burden related to cold dominated in all three health outcomes (5.1%, 2.0-8.1, 11.4%, 6.0-15.4, and 5.1%, -5.5 to 13.8 respectively). Heat had a more pronounced effect on the burden of respiratory deaths (0.9%, 0.2-1.0). Extreme cold accounted for 0.2% of non-accidental deaths and 0.3% of cardiovascular and respiratory deaths, while extreme heat contributed to 0.2% of non-accidental and to 0.3% of respiratory deaths. CONCLUSIONS: Most of the burden could be attributed to the contribution of moderate cold. This evidence has significant implications for enhancing public-health policies to better address health consequences in the Norwegian setting.

3.
Annu Rev Public Health ; 44: 213-232, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36623928

ABSTRACT

Extreme weather events are expected to increase due to climate change, which could pose an additional burden of morbidity and mortality. In recent decades, drought severity has increased in several regions around the world, affecting health by increasing the risk of water-, food-, and vector-borne diseases, malnutrition, cardiovascular and respiratory illness, mental health disorders, and mortality. Drought frequency and severity are expected to worsen across large regions as a result of a decrease in precipitation and an increase in temperature and atmospheric evaporative demand, posing a pressing challenge for public health. Variation in impacts among countries and communities is due to multiple factors, such as aging, socioeconomic status, access to health care, and gender, affecting population resilience. Integrative proactive action plans focused on risk management are required, and resources should be transferred to developing countries to reduce their vulnerability and risk.


Subject(s)
Droughts , Public Health , Humans , Climate Change
4.
Environ Res ; 226: 115698, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36931379

ABSTRACT

While climate change and population ageing are expected to increase the exposure and vulnerability to extreme heat events, there is emerging evidence suggesting that social inequalities would additionally magnify the projected health impacts. However, limited evidence exists on how social determinants modify heat-related cardiovascular morbidity. This study aims to explore the association between heat and the incidence of first acute cardiovascular event (CVE) in adults in Madrid between 2015 and 2018, and to assess how social context and other individual characteristics modify the estimated association. We performed a case-crossover study using the individual information collected from electronic medical records of 6514 adults aged 40-75 living in Madrid city that suffered a first CVE during summer (June-September) between 2015 and 2018. We applied conditional logistic regression with a distributed lag non-linear model to analyse the heat-CVE association. Estimates were expressed as Odds Ratio (OR) for extreme heat (at 97.5th percentile of daily maximum temperature distribution), compared to the minimum risk temperature. We performed stratified analyses by specific diagnosis, sex, age (40-64, 65-75), country of origin, area-level deprivation, and presence of comorbidities. Overall, the risk of suffering CVE increased by 15.3% (OR: 1.153 [95%CI 1.010-1.317]) during extreme heat. Males were particularly more affected (1.248, [1.059-1.471]), vs 1.039 [0.810-1.331] in females), and non-Spanish population (1.869 [1.28-2.728]), vs 1.084 [0.940-1.250] in Spanish). Similar estimates were found by age groups. We observed a dose-response pattern across deprivation levels, with larger risks in populations with higher deprivation (1.228 [1.031-1.462]) and almost null association in the lowest deprivation group (1.062 [0.836-1.349]). No clear patterns of larger vulnerability were found by presence of comorbidity. We found that heat unequally increased the risk of suffering CVE in adults in Madrid, affecting mainly males and deprived populations. Local measures should pay special attention to vulnerable populations.


Subject(s)
Cardiovascular Diseases , Hot Temperature , Adult , Male , Female , Humans , Spain/epidemiology , Cross-Over Studies , Incidence , Socioeconomic Factors , Cardiovascular Diseases/epidemiology
5.
N Engl J Med ; 381(8): 705-715, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31433918

ABSTRACT

BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 µm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 µm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 µg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/analysis , Mortality , Particulate Matter/adverse effects , Air Pollution/analysis , Cardiovascular Diseases/mortality , Cause of Death , Environmental Exposure/adverse effects , Environmental Exposure/legislation & jurisprudence , Global Health , Humans , Particle Size , Particulate Matter/analysis , Respiratory Tract Diseases/mortality , Risk
6.
Proc Natl Acad Sci U S A ; 116(12): 5420-5427, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30833395

ABSTRACT

Heat early warning systems and action plans use temperature thresholds to trigger warnings and risk communication. In this study, we conduct multistate analyses, exploring associations between heat and all-cause and cause-specific hospitalizations, to inform the design and development of heat-health early warning systems. We used a two-stage analysis to estimate heat-health risk relationships between heat index and hospitalizations in 1,617 counties in the United States for 2003-2012. The first stage involved a county-level time series quasi-Poisson regression, using a distributed lag nonlinear model, to estimate heat-health associations. The second stage involved a multivariate random-effects meta-analysis to pool county-specific exposure-response associations across larger geographic scales, such as by state or climate region. Using results from this two-stage analysis, we identified heat index ranges that correspond with significant heat-attributable burden. We then compared those with the National Oceanic and Atmospheric Administration National Weather Service (NWS) heat alert criteria used during the same time period. Associations between heat index and cause-specific hospitalizations vary widely by geography and health outcome. Heat-attributable burden starts to occur at moderately hot heat index values, which in some regions are below the alert ranges used by the NWS during the study time period. Locally specific health evidence can beneficially inform and calibrate heat alert criteria. A synchronization of health findings with traditional weather forecasting efforts could be critical in the development of effective heat-health early warning systems.


Subject(s)
Extreme Heat , Hospitalization/statistics & numerical data , Disaster Planning/methods , Extreme Heat/adverse effects , Forecasting/methods , Humans , Public Health/methods , Risk Assessment
7.
Environ Res ; 198: 111227, 2021 07.
Article in English | MEDLINE | ID: mdl-33974842

ABSTRACT

Air temperature has been the most commonly used exposure metric in assessing relationships between thermal stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize the thermal environment has been one of the main limitations for the use of more complex thermal indices. Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal Thermal Climate Index (UTCI) based on ERA5 - the latest global climate reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) - as a health-related tool. Employing a novel ERA5-based thermal comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response relationships between mortality and thermal conditions in individual cities. We then employed meta-regression models to pool the results for each city into four groups according to climate zone. To evaluate the performance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for definition of life-threatening thermal conditions in locations where high-quality station data are not available.


Subject(s)
Climate , Hot Temperature , Cities , Europe/epidemiology , Wind
8.
Epidemiology ; 31(6): 779-787, 2020 11.
Article in English | MEDLINE | ID: mdl-33003149

ABSTRACT

BACKGROUND: Air conditioning has been proposed as one of the key factors explaining reductions of heat-related mortality risks observed in the last decades. However, direct evidence is still limited. METHODS: We used a multi-country, multi-city, longitudinal design to quantify the independent role of air conditioning in reported attenuation in risk. We collected daily time series of mortality, mean temperature, and yearly air conditioning prevalence for 311 locations in Canada, Japan, Spain, and the USA between 1972 and 2009. For each city and sub-period, we fitted a quasi-Poisson regression combined with distributed lag non-linear models to estimate summer-only temperature-mortality associations. At the second stage, we used a novel multilevel, multivariate spatio-temporal meta-regression model to evaluate effect modification of air conditioning on heat-mortality associations. We computed relative risks and fractions of heat-attributable excess deaths under observed and fixed air conditioning prevalences. RESULTS: Results show an independent association between increased air conditioning prevalence and lower heat-related mortality risk. Excess deaths due to heat decreased during the study periods from 1.40% to 0.80% in Canada, 3.57% to 1.10% in Japan, 3.54% to 2.78% in Spain, and 1.70% to 0.53% in the USA. However, increased air conditioning explains only part of the observed attenuation, corresponding to 16.7% in Canada, 20.0% in Japan, 14.3% in Spain, and 16.7% in the USA. CONCLUSIONS: Our findings are consistent with the hypothesis that air conditioning represents an effective heat adaptation strategy, but suggests that other factors have played an equal or more important role in increasing the resilience of populations.


Subject(s)
Air Conditioning , Hot Temperature , Mortality , Air Conditioning/adverse effects , Canada/epidemiology , Hot Temperature/adverse effects , Humans , Japan/epidemiology , Longitudinal Studies , Mortality/trends , Spain/epidemiology
9.
Environ Res ; 186: 109447, 2020 07.
Article in English | MEDLINE | ID: mdl-32302868

ABSTRACT

BACKGROUND: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. METHODS: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. RESULTS: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 °C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 °C, 1.53% (95%CI: 0.96-2.06) at 4 °C, and 2.88% (95%CI: 1.60-4.10) at 5 °C, compared to today's warming level of 1 °C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 °C versus 1 °C of GMT rise. CONCLUSIONS: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.


Subject(s)
Climate Change , Global Warming , Cities , Europe , Germany/epidemiology , Hot Temperature , Mortality , Temperature
10.
Scand J Public Health ; 48(4): 428-435, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30253698

ABSTRACT

Aims: The present study aimed to investigate if set thresholds in the Swedish heat-wave warning system are valid for all parts of Sweden and if the heat-wave warning system captures a potential increase in all-cause mortality and coronary heart disease (CHD) mortality. An additional aim was to investigate whether neighbourhood deprivation modifies the relationship between heat waves and mortality. Methods: From 1990 until 2014, in 14 municipalities in Sweden, we collected data on daily maximum temperatures and mortality for the five warmest months. Heat waves were defined according to the categories used in the current Swedish heat-wave warning system. Using a case-crossover approach, we investigated the association between heat waves and mortality in Sweden, as well as a modifying effect of neighbourhood deprivation. Results: On a national as well as a regional level, heat waves significantly increased both all-cause mortality and CHD mortality by approximately 10% and 15%, respectively. While neighbourhood deprivation did not seem to modify heat wave-related all-cause mortality, CHD mortality did seem to modify the risk. Conclusions: It may not be appropriate to assume that heat waves in Sweden will have the same impact in a northern setting as in a southern, or that the impact of heat waves will be the same in affluent and deprived neighbourhoods. When designing and implementing heat-wave warning systems, neighbourhood, regional and national information should be incorporated.


Subject(s)
Hot Temperature/adverse effects , Mortality/trends , Residence Characteristics/statistics & numerical data , Cause of Death/trends , Cities , Coronary Disease/mortality , Cross-Over Studies , Humans , Risk Factors , Socioeconomic Factors , Sweden/epidemiology
11.
Epidemiology ; 30(3): 321-329, 2019 05.
Article in English | MEDLINE | ID: mdl-30829832

ABSTRACT

Reliable estimates of future health impacts due to climate change are needed to inform and contribute to the design of efficient adaptation and mitigation strategies. However, projecting health burdens associated to specific environmental stressors is a challenging task because of the complex risk patterns and inherent uncertainty of future climate scenarios. These assessments involve multidisciplinary knowledge, requiring expertise in epidemiology, statistics, and climate science, among other subjects. Here, we present a methodologic framework to estimate future health impacts under climate change scenarios based on a defined set of assumptions and advanced statistical techniques developed in time-series analysis in environmental epidemiology. The proposed methodology is illustrated through a step-by-step hands-on tutorial structured in well-defined sections that cover the main methodological steps and essential elements. Each section provides a thorough description of each step, along with a discussion on available analytical options and the rationale on the choices made in the proposed framework. The illustration is complemented with a practical example of study using real-world data and a series of R scripts included as Supplementary Digital Content; http://links.lww.com/EDE/B504, which facilitates its replication and extension on other environmental stressors, outcomes, study settings, and projection scenarios. Users should critically assess the potential modeling alternatives and modify the framework and R code to adapt them to their research on health impact projections.


Subject(s)
Climate Change , Environmental Health , Models, Theoretical , Forecasting , Humans , Risk Assessment , User-Computer Interface
12.
Environ Health ; 18(1): 66, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31412877

ABSTRACT

BACKGROUND: Only a few studies have examined the impact of a particular heat event on morbidity. The aim of this study was to evaluate the impact of the warm summer 2015 on emergency hospital admissions (EHA) in Switzerland. The summer 2015 ranks as the second hottest after 2003 in the history of temperature observation in Switzerland. METHODS: Daily counts of EHA for various disease categories during summer 2015 were analyzed in relation to previous summers in Switzerland. Excess EHA for non-external causes during summer 2015 (June-August) were estimated by age group, gender, geographic region and disease category by comparing observed and expected cases. The latter were predicted from strata-specific quasi-Poisson regression models fitted to the daily counts of EHA for years 2012-2014. RESULTS: Over the three summer months in 2015, an estimated 2.4% (95% confidence interval [CI] 1.6-3.2%) increase in EHA (non-external causes) occurred corresponding to 2,768 excess cases. Highest excess EHA estimates were found in the warmest regions (Ticino [8.4%, 95% CI 5.1-11.7%] and the Lake Geneva region [4.8%, 95% CI 3.0-6.7%]) and among the elderly population aged ≥75 years (5.1%, 95% CI 3.7-6.5%). Increased EHA during days with most extreme temperatures were observed for influenza and pneumonia, certain infectious diseases and diseases of the genitourinary system. CONCLUSIONS: Summer 2015 had a considerable impact on EHA in Switzerland. The daily number of EHA mainly increased due to diseases not commonly linked to heat-related mortality. No excess morbidity was found for cardiovascular and most respiratory diseases. This suggests that current public health interventions should be reevaluated to prevent both heat-related illness and deaths.


Subject(s)
Hospitalization/statistics & numerical data , Hot Temperature/adverse effects , Morbidity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Seasons , Switzerland/epidemiology , Young Adult
15.
Environ Res ; 162: 97-105, 2018 04.
Article in English | MEDLINE | ID: mdl-29289860

ABSTRACT

Temperature and relative humidity have opposing effects on evaporative water loss, the likely mediator of the temperature-dependence of nephrolithiasis. However, prior studies considered only dry-bulb temperatures when estimating the temperature-dependence of nephrolithiasis. We used distributed lag non-linear models and repeated 10-fold cross-validation to determine the daily temperature metric and corresponding adjustment for relative humidity that most accurately predicted kidney stone presentations during hot and cold periods in South Carolina from 1997 to 2015. We examined three metrics for wet-bulb temperatures and heat index, both of which measure the combination of temperature and humidity, and for dry-bulb temperatures: (1) daytime mean temperature; (2) 24-h mean temperature; and (3) most extreme 24-h temperature. For models using dry-bulb temperatures, we considered four treatments of relative humidity. Among 188,531 patients who presented with kidney stones, 24-h wet bulb temperature best predicted kidney stone presentation during summer. Mean cross-validated residuals were generally lower in summer for wet-bulb temperatures and heat index than the corresponding dry-bulb temperature metric, regardless of type of adjustment for relative humidity. Those dry-bulb models that additionally adjusted for relative humidity had higher mean residuals than other temperature metrics. The relative risk of kidney stone presentations at the 99th percentile of each temperature metric compared to the respective median temperature in summer months differed by temperature metric and relative humidity adjustment, and ranged from an excess risk of 8-14%. All metrics performed similarly in winter. The combination of temperature and relative humidity determine the risk of kidney stone presentations, particularly during periods of high heat and humidity. These results suggest that metrics that measure moist heat stress should be used to estimate the temperature-dependence of kidney stone presentations, but that the particular metric is relatively unimportant.


Subject(s)
Hot Temperature , Humidity , Kidney Calculi , Heat-Shock Response , Humans , Kidney Calculi/epidemiology , Male , Risk , South Carolina , Temperature
16.
Environ Res ; 158: 703-709, 2017 10.
Article in English | MEDLINE | ID: mdl-28735231

ABSTRACT

Designing effective public health strategies to prevent adverse health effect of hot weather is crucial in the context of global warming. In Switzerland, the 2003 heat have caused an estimated 7% increase in all-cause mortality. As a consequence, the Swiss Federal Office of Public Health developed an information campaign to raise public awareness on heat threats. For a better understanding on how hot weather affects daily mortality in Switzerland, we assessed the effect of heat on daily mortality in eight Swiss cities and population subgroups from 1995 to 2013 using different temperature metrics (daily mean (Tmean), maximum (Tmax), minimum (Tmin) and maximum apparent temperature (Tappmax)), and aimed to evaluate variations of the heat effect after 2003 (1995-2002 versus 2004-2013). We applied conditional quasi-Poisson regression models with non-linear distributed lag functions to estimate temperature-mortality associations over all cities (1995-2013) and separately for two time periods (1995-2002, 2004-2013). Relative risks (RR) of daily mortality were estimated for increases in temperature from the median to the 98th percentile of the warm season temperature distribution. Over the whole time period, significant temperature-mortality relationships were found for all temperature indicators (RR (95% confidence interval): Tappmax: 1.12 (1.05; 1.18); Tmax: 1.15 (1.08-1.22); Tmean: 1.16 (1.09-1.23); Tmin 1.23 (1.15-1.32)). Mortality risks were higher at the beginning of the summer, especially for Tmin. In the more recent time period, we observed a non-significant reduction in the effect of high temperatures on mortality, with the age group > 74 years remaining the population at highest risk. High temperatures continue to be a considerable risk factor for human health in Switzerland after 2003. More effective public health measures targeting the elderly should be promoted with increased attention to the first heat events in summer and considering both high day-time and night-time temperatures.


Subject(s)
Hot Temperature/adverse effects , Mortality , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cities , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Risk , Risk Factors , Seasons , Switzerland/epidemiology , Young Adult
17.
Am J Epidemiol ; 183(4): 286-93, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26811244

ABSTRACT

In this study we evaluated the association between temperature variation and mortality and compared it with the contribution due to mean daily temperature in 6 cities with different climates. Quasi-Poisson time series regression models were applied to estimate the associations (relative risk and 95% confidence interval) of mean daily temperature (99th and 1st percentiles, with temperature of minimum mortality as the reference category), interday temperature variation (difference between the mean temperatures of 2 neighboring days) and intraday temperature variation (diurnal temperature range (DTR)) (referred to as median variation) with mortality in 6 cities: London, United Kingdom; Madrid, Spain; Stockholm, Sweden; New York, New York; Miami, Florida; and Houston, Texas (date range, 1985-2010). All cities showed a substantial increase in mortality risk associated with mean daily temperature, with relative risks reaching 1.428 (95% confidence interval (CI): 1.329, 1.533) for heat in Madrid and 1.467 (95% CI: 1.385, 1.555) for cold in London. Inconsistent results for inter-/intraday change were obtained, except for some evidence of protective associations on hot and cold days (relative risk (RR) = 0.977 (95% CI: 0.955, 0.999) and RR = 0.981 (95% CI: 0.971, 0.991), respectively) in Madrid and on cold days in Stockholm (RR = 0.989, 95% CI: 0.980, 0.998). Our results indicate that the association between mortality and temperature variation is generally minimal compared with mean daily temperatures, although further research on intraday changes is needed.


Subject(s)
Cities/statistics & numerical data , Mortality , Temperature , Europe , Humans , Regression Analysis , United States
18.
Tob Control ; 25(e2): e135-e141, 2016 12.
Article in English | MEDLINE | ID: mdl-27118814

ABSTRACT

BACKGROUND: Birth outcomes are relevant for future children's heath. Capitalising on a natural experimental design in Switzerland, we evaluated how regional smoking bans introduced at different time points affected birth outcomes, including preterm and early-term births. METHODOLOGY: We used birth registry data of all singleton neonates born in Switzerland (2007-2012). We developed canton-specific interrupted time-series followed by random meta-analysis to evaluate the benefits of smoking bans on preterm (<37 gestational weeks) and early-term (37-38 gestational weeks) births. Heterogeneity across type of ban and contextual characteristics was explored through metaregression. A time-to-event approach was used for evaluating duration of pregnancy under the smoking bans and effects, taking into account individual maternal factors. RESULTS: We observed a decrease in the risk of preterm birth of 3.6% (95% CI, -9.3% to 2.5%), and early-term birth of 5.0% (95% CI -7.5% to -2.5%). Results showed a clear dose-response relationship. Greater risk reductions were obtained for preterm births in areas with more comprehensive bans (-6.8%; 95% CI -12.1% to 0.1%), and for pregnancies with the longest gestational time under smoking bans (HR, 0.991; 95% CI 0.984 to 0.997 per 10% increase in duration). Benefits were unequal across outcomes and characteristics of cantons and mothers. CONCLUSION: Smoking bans resulted in improved birth outcomes in Switzerland with cantons that adopted more comprehensive smoking bans achieving greater benefits. Early-term births constitute a previously ignored though important group.


Subject(s)
Premature Birth/epidemiology , Smoke-Free Policy , Adult , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Male , Pregnancy , Pregnancy Outcome/epidemiology , Premature Birth/etiology , Registries , Smoking/adverse effects , Smoking/legislation & jurisprudence , Switzerland/epidemiology , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/legislation & jurisprudence , Tobacco Smoke Pollution/prevention & control
19.
Environ Geochem Health ; 38(3): 703-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26215426

ABSTRACT

In July 2012, two simultaneous wildfires burnt a big area in Valencia (Spain), where a birth cohort study (INMA) is being developed. The heavy smoke covered the whole INMA study area for several days. We aimed at evaluating the 2012 Valencia wildfire effects on the health of children enrolled in the INMA-Valencia cohort. Two weeks after the extinction of the wildfires, a phone survey was conducted and finally 460 individuals were enrolled. We considered a wildfire period (12-day interval when they were active) and a control period (12-day interval just before wildfires). Parents were asked about respiratory symptoms experienced during both periods, and during wildfires only about the preventive measures adopted and the perception of exposure, along with individual data collected through the different follow-up surveys of the cohort. Conditional logistic regression models were applied, and we included interaction terms for asthma/rhinitis and level of perception of exposure; 82.4 % perceived smoke smell outdoors, 40 % indoors and more than 90 % of the families observed the presence of ash. An adjusted odds ratio of 3.11 [95 % confidence interval 1.62-5.97] for itchy/watery eyes and 3.02 [1.41-6.44] for sore throat was obtained. Significant interaction terms for rhinitis and asthma in itchy/watery eyes and sneezing, and only asthma for sore throat were obtained. Exposure to wildfire smoke was associated with increased respiratory symptoms in this child population, particularly affecting susceptible individuals with asthma or rhinitis.


Subject(s)
Environmental Exposure , Fires , Respiratory Tract Diseases/epidemiology , Smoke/adverse effects , Child , Cohort Studies , Eye Diseases/epidemiology , Female , Humans , Male , Smoke/prevention & control , Spain/epidemiology , Surveys and Questionnaires
20.
Environ Res ; 134: 210-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25173054

ABSTRACT

BACKGROUND: Prematurity is the second-leading cause of death in children under the age of 5 worldwide. It is predicted that the future climate will have more intense, longer lasting and frequent extreme heat episodes, and so the temperature effect on the risk of preterm birth is generating considerable interest in the public health field. Our aim was to explore the potential short-term effects of elevated temperatures on the risk of preterm birth in Valencia (Spain). METHODS: All singleton natural births born in the metropolitan area of Valencia during the warm season (May-September, 2006-2010) were included (N=20,148). We applied time-series quasi-Poisson generalized additive models to evaluate the risk of preterm birth at different maximum apparent and minimum temperature values (50th, 90th and 99th percentiles of the warm season) up to 3 weeks before delivery (reference: overall annual median value). In addition, three temperature-interval-specific estimates were obtained for changes between each of these temperature values. We took into account the pregnancies at risk adjusted by the gestational age distribution of the set in each day. We used distributed-lag non-linear models with a flexible function in the shape of the relationship and lag structure. RESULTS: Risk of preterm birth increased up to 20% when maximum apparent temperature exceeded the 90th percentile two days before delivery and 5% when minimum temperature rose to the 90th percentile in the last week. Differences between interval-specific risk estimates across lags were observed. CONCLUSION: Exposure to elevated temperatures was associated with an increased risk of preterm birth in the following three weeks.


Subject(s)
Climate , Hot Temperature , Obstetric Labor, Premature , Female , History, 16th Century , Humans , Male , Pregnancy , Risk Factors , Spain
SELECTION OF CITATIONS
SEARCH DETAIL